中考数学真题汇编二次函数含答案Word文档格式.docx
《中考数学真题汇编二次函数含答案Word文档格式.docx》由会员分享,可在线阅读,更多相关《中考数学真题汇编二次函数含答案Word文档格式.docx(12页珍藏版)》请在冰豆网上搜索。
【答案】B
2.如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是(
)
3.关于二次函数,下列说法正确的是(
图像与轴的交点坐标为
图像的对称轴在轴的右侧
当时,的值随值的增大而减小
的最小值为-3
【答案】D
4.二次函数的图像如图所示,下列结论正确是(
)
有两个不相等的实数根
【答案】C
5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点(
6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。
已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点(
(-3,-6)
(-3,0)
(-3,-5)
(-3,-1)
7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是(
点火后9s和点火后13s的升空高度相同
点火后24s火箭落于地面
点火后10s的升空高度为139m
火箭升空的最大高度为145m
8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是(
1
2
3
4
9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:
①;
②;
③;
④(为实数);
⑤当时,,其中正确的是(
①②④
①②⑤
②③④
③④⑤
【答案】A
10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是(
11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;
乙发现是方程的一个根;
丙发现函数的最小值为3;
丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是(
甲
乙
丙
丁
12.如图所示,△DEF中,∠DEF=90°
∠D=30°
DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为(
(
(
二、填空题
13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)
【答案】增大
14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。
【答案】4-4
三、解答题
15.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形。
若图形是线段,求出线段的长度;
若图形是抛物线,求出抛物线的函数关系式。
请根据以下点的坐标,求出线段的长度或抛物线的函数关系式。
①P1(4,0),P2(0,0),P3(6,6)。
②P1(0,0),P2(4,0),P3(6,6)。
【答案】①∵P1(4,0),P2(0,0),4-0=4>0,
∴绘制线段P1P2,P1P2=4.
②∵P1(0,0),P2(4,0),P3(6,6),0-0=0,
∴绘制抛物线,
设y=ax(x-4),把点(6,6)坐标代入得a=,
∴,即。
16.如图,抛物线(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值最大值是多少
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
【答案】
(1)设抛物线的函数表达式为y=ax(x-10)
∵当t=2时,AD=4
∴点D的坐标是(2,4)
∴4=a×
2×
(2-10),解得a=
∴抛物线的函数表达式为
(2)由抛物线的对称性得BE=OA=t
∴AB=10-2t
当x=t时,AD=
∴矩形ABCD的周长=2(AB+AD)=
∵<
∴当t=1时,矩形ABCD的周长有最大值,最大值是多少
(3)如图,
当t=2时,点A,B,C,D的坐标分别为(2,0),(8,0),(8,4),(2,4)
∴矩形ABCD对角线的交点P的坐标为(5,2)
当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分。
当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分。
∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分。
当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积。
∵AB∥CD
∴线段OD平移后得到线段GH
∴线段OD的中点Q平移后的对应点是P
在△OBD中,PQ是中位线
∴PQ=OB=4
所以,抛物线向右平移的距离是4个单位。
17.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:
m)与飞行时间x(单位:
s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:
(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少
(2)在飞行过程中,小球从飞出到落地所用时间是多少
(3)在飞行过程中,小球飞行高度何时最大最大高度是多少
(1)解:
当y=15时,
15=﹣5x2+20x,
解得,x1=1,x2=3,
答:
在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s
(2)解:
当y=0时,
0═﹣5x2+20x,
解得,x3=0,x2=4,
∵4﹣0=4,
∴在飞行过程中,小球从飞出到落地所用时间是4s
(3)解:
y=﹣5x2+20x=﹣5(x﹣2)2+20,
∴当x=2时,y取得最大值,此时,y=20,
在飞行过程中,小球飞行高度第2s时最大,最大高度是20m
18.在平面直角坐标系中,点,点.已知抛物线(是常数),定点为.
(1)当抛物线经过点时,求定点的坐标;
(2)若点在轴下方,当时,求抛物线的解析式;
(3)无论取何值,该抛物线都经过定点.当时,求抛物线的解析式.
∵抛物线经过点,
∴,解得.
∴抛物线的解析式为.
∵
,
∴顶点的坐标为.
如图1,
抛物线的顶点的坐标为.
由点在轴正半轴上,点在轴下方,,知点在第四象限.
过点作轴于点,则.
可知,即,解得,.
当时,点不在第四象限,舍去.
∴.
∴抛物线解析式为.
如图2:
由
可知,
当时,无论取何值,都等于4.
得点的坐标为.
过点作,交射线于点,分别过点,作轴的垂线,垂足分别为,,则.
∵,,
∴.∴.
,
∴,.
可得点的坐标为或.
当点的坐标为时,可得直线的解析式为.
∵点在直线上,
∴.解得,.
当时,点与点重合,不符合题意,∴.
当点的坐标为时,
可得直线的解析式为.
∴
.解得(舍),.
综上,或.
故抛物线解析式为或.
19.如图,已知二次函数的图象经过点,与轴分别交于点,点.点是直线上方的抛物线上一动点.
(1)求二次函数的表达式;
(2)连接,,并把沿轴翻折,得到四边形.若四边形为菱形,请