组成原理Word格式.docx
《组成原理Word格式.docx》由会员分享,可在线阅读,更多相关《组成原理Word格式.docx(35页珍藏版)》请在冰豆网上搜索。
(1)对于逻辑左移或逻辑右移功能,将一条对角线的开关导通,这将所有的输入位与所使用的输出分别相连,而没有同任何输入相连的则输出连接0。
(2)对于循环右移功能,右移对角线同互补的左移对角线一起激活。
例如,在4位矩阵中使用‘右1’和‘左3’对角线来实现右循环1位。
(3)对于未连接的输出位,移位时使用符号扩展或是0填充,具体由相应的指令控制。
使用另外的逻辑进行移位总量译码和符号判别。
图1-1运算器原理图
运算器部件由一片CPLD实现。
ALU的输入和输出通过三态门74LS245连到CPU内总线上,另外还有指示灯标明进位标志FC和零标志FZ。
请注意:
实验箱上凡丝印标注有马蹄形标记‘’,表示这两根排针之间是连通的。
图中除T4和CLR,其余信号均来自于ALU单元的排线座,实验箱中所有单元的T1、T2、T3、T4都连接至控制总线单元的T1、T2、T3、T4,CLR都连接至CON单元的CLR按钮。
T4由时序单元的TS4提供(时序单元的介绍见附录二),其余控制信号均由CON单元的二进制数据开关模拟给出。
控制信号中除T4为脉冲信号外,其余均为电平信号,其中ALU_B为低有效,其余为高有效。
图1-2交叉开关桶形移位器原理图
暂存器A和暂存器B的数据能在LED灯上实时显示,原理如图1-3所示(以A0为例,其它相同)。
进位标志FC、零标志FZ和数据总线D7…D0的显示原理也是如此。
图1-3A0显示原理图
ALU和外围电路的连接如图1-4所示,图中的小方框代表排针座。
运算器的逻辑功能表如表1-1所示,其中S3S2S1S0CN为控制信号,FC为进位标志,FZ为运算器零标志,表中功能栏内的FC、FZ表示当前运算会影响到该标志。
图1-4ALU和外围电路连接原理图
表1-1运算器逻辑功能表
运算类型
S3S2S1S0
CN
功能
逻辑运算
0000
X
F=A(直通)
0001
F=B(直通)
0010
F=AB(FZ)
0011
F=A+B(FZ)
0100
F=/A(FZ)
移位运算
0101
F=A不带进位循环右移B(取低3位)位(FZ)
0110
F=A逻辑右移一位(FZ)
1
F=A带进位循环右移一位(FC,FZ)
0111
F=A逻辑左移一位(FZ)
F=A带进位循环左移一位(FC,FZ)
算术运算
1000
置FC=CN(FC)
1001
F=A加B(FC,FZ)
1010
F=A加B加FC(FC,FZ)
1011
F=A减B(FC,FZ)
1100
F=A减1(FC,FZ)
1101
F=A加1(FC,FZ)
1110
(保留)
1111
*表中“X”为任意态,下同
1.4实验步骤
(1)按图1-5连接实验电路,并检查无误。
图中将用户需要连接的信号用圆圈标明(其它实验相同)。
图1-5实验接线图
(2)将时序与操作台单元的开关KK2置为‘单拍’档,开关KK1、KK3置为‘运行’档。
(3)打开电源开关,如果听到有‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。
然后按动CON单元的CLR按钮,将运算器的A、B和FC、FZ清零。
(4)用输入开关向暂存器A置数。
拨动CON单元的SD27…SD20数据开关,形成二进制数01100101(或其它数值),数据显示亮为‘1’,灭为‘0’。
置LDA=1,LDB=0,连续按动时序单元的ST按钮,产生一个T4上沿,则将二进制数01100101置入暂存器A中,暂存器A的值通过ALU单元的A7…A0八位LED灯显示。
(5)用输入开关向暂存器B置数。
拨动CON单元的SD27…SD20数据开关,形成二进制数10100111(或其它数值)。
置LDA=0,LDB=1,连续按动时序单元的ST按钮,产生一个T4上沿,则将二进制数10100111置入暂存器B中,暂存器B的值通过ALU单元的B7…B0八位LED灯显示。
(6)改变运算器的功能设置,观察运算器的输出。
置ALU_B=0、LDA=0、LDB=0,然后按表1-1-1置S3、S2、S1、S0和Cn的数值,并观察数据总线LED显示灯显示的结果。
如置S3、S2、S1、S0为0010,运算器作逻辑与运算,置S3、S2、S1、S0为1001,运算器作加法运算。
如果实验箱和PC联机操作,则可通过软件中的数据通路图来观测实验结果,方法是:
打开软件,选择联机软件的“【实验】—【运算器实验】”,打开运算器实验的数据通路图,如图1-6所示。
进行上面的手动操作,每按动一次ST按钮,数据通路图会有数据的流动,反映当前运算器所做的操作,或在软件中选择“【调试】—【单节拍】”,其作用相当于将时序单元的状态开关KK2置为‘单拍’档后按动了一次ST按钮,数据通路图也会反映当前运算器所做的操作。
重复上述操作,并完成表1-2。
然后改变A、B的值,验证FC、FZ的锁存功能。
图1-6数据通路图
表1-2运算结果表
A
B
结果
65
A7
0000
F=(65)FC=()FZ=()
0001
F=(A7)FC=()FZ=()
0010
F=()FC=()FZ=()
0011
0100
0101
0110
0111
1000
1001
1010(FC=0)
1010(FC=1)
1011
1100
1101
实验二静态随机存储器
2.1实验目的
掌握静态随机存储器RAM工作特性及数据的读写方法。
2.2实验学时
2.3实验原理
实验所用的静态存储器由一片6116(2K×
8bit)构成(位于MEM单元),如图2-1所示。
6116有三个控制线:
CS(片选线)、OE(读线)、WE(写线),其功能如表2-1所示,当片选有效(CS=0)时,OE=0时进行读操作,WE=0时进行写操作,本实验将CS常接地。
图2-1SRAM6116引脚图
由于存储器(MEM)最终是要挂接到CPU上,所以其还需要一个读写控制逻辑,使得CPU能控制MEM的读写,实验中的读写控制逻辑如图2-1-2所示,由于T3的参与,可以保证MEM的写脉宽与T3一致,T3由时序单元的TS3给出(时序单元的介绍见附录2)。
IOM用来选择是对I/O还是对MEM进行读写操作,RD=1时为读,WR=1时为写。
表2-1SRAM6116功能表
图2-2读写控制逻辑
实验原理图如图2-3所示,存储器数据线接至数据总线,数据总线上接有8个LED灯显示D7…D0的内容。
地址线接至地址总线,地址总线上接有8个LED灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&
AR单元)给出。
数据开关(位于IN单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。
地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。
图2-3存储器实验原理图
实验箱中所有单元的时序都连接至时序与操作台单元,CLR都连接至CON单元的CLR按钮。
实验时T3由时序单元给出,其余信号由CON单元的二进制开关模拟给出,其中IOM应为低(即MEM操作),RD、WR高有效,MR和MW低有效,LDAR高有效。
2.4实验步骤
(1)关闭实验系统电源,按图2-4连接实验电路,并检查无误,图中将用户需要连接的信号用圆圈标明。
(2)将时序与操作台单元的开关KK1、KK3置为运行档、开关KK2置为‘单步’档(时序单元的介绍见附录二)。
(3)将CON单元的IOR开关置为1(使IN单元无输出),打开电源开关,如果听到有‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。
图2-4实验接线图
(4)给存储器的00H、01H、02H、03H、04H地址单元中分别写入数据11H、12H、13H、14H、15H。
由前面的存储器实验原理图(图2-3)可以看出,由于数据和地址由同一个数据开关给出,因此数据和地址要分时写入,先写地址,具体操作步骤为:
先关掉存储器的读写(WR=0,RD=0),数据开关输出地址(IOR=0),然后打开地址寄存器门控信号(LDAR=1),按动ST产生T3脉冲,即将地址打入到AR中。
再写数据,具体操作步骤为:
先关掉存储器的读写(WR=0,RD=0)和地址寄存器门控信号(LDAR=0),数据开关输出要写入的数据,打开输入三态门(IOR=0),然后使存储器处于写状态(WR=1,RD=0,IOM=0),按动ST产生T3脉冲,即将数据打入到存储器中。
写存储器的流程如图2-5所示(以向00地址单元写入11H为例):
图2-5写存储器流程图
(5)依次读出第00、01、02、03、04号单元中的内容,观察上述各单元中的内容是否与前面写入的一致。
同写操作类似,也要先给出地址,然后进行读,地址的给出和前面一样,而在进行读操作时,应先关闭IN单元的输出(IOR=1),然后使存储器处于读状态(WR=0,RD=1,IOM=0),此时数据总线上的数即为从存储器当前地址中读出的数据内容。
读存储器的流程如图2-6所示(以从00地址单元读出11H为例):