统计案例导学案Word文档下载推荐.doc
《统计案例导学案Word文档下载推荐.doc》由会员分享,可在线阅读,更多相关《统计案例导学案Word文档下载推荐.doc(16页珍藏版)》请在冰豆网上搜索。
1
2
3
4
5
6
7
8
身高
165
157
170
175
155
体重
48
57
50
54
64
61
43
59
问题:
画出散点图,求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重.
解:
由于问题中要求根据身高预报体重,因此选自变量x,为因变量.
(1)做散点图:
从散点图可以看出和有比较好的
相关关系.
(2)==
所以
于是得到回归直线的方程为
(3)身高为172cm的女大学生,由回归方程可以预报其体重为
身高为172cm的女大学生,体重一定是上述预报值吗?
思考:
线性回归模型与一次函数有何不同?
新知:
用相关系数r可衡量两个变量之间关系.计算公式为
r=
r>
0,相关,r<
0相关;
相关系数的绝对值越接近于1,两个变量的线性相关关系,它们的散点图越接近;
,两个变量有关系.
※典型例题
例1某班5名学生的数学和物理成绩如下表:
学生
学科
A
B
C
D
E
数学成绩(x)
88
76
75
62
物理成绩(y)
78
65
70
60
(1)画散点图;
(2)求物理成绩y对数学成绩x的回归直线方程;
(3)该班某学生数学成绩为96,试预测其物理成绩;
变式:
该班某学生数学成绩为55,试预测其物理成绩;
小结:
求线性回归方程的步骤:
※动手试试
练.(07广东文科卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据
(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值)
三、总结提升
※学习小结
1.求线性回归方程的步骤:
2.线性回归模型与一次函数有何不同
※知识拓展
在实际问题中,是通过散点图来判断两变量之间的性关系的,
学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:
5分钟满分:
10分)计分:
1.下列两个变量具有相关关系的是()
A.正方体的体积与边长
B.人的身高与视力
C.人的身高与体重
D.匀速直线运动中的位移与时间
2.在画两个变量的散点图时,下面哪个叙述是正确的()
A.预报变量在x轴上,解释变量在y轴上
B.解释变量在x轴上,预报变量在y轴上
C.可以选择两个变量中任意一个变量在x轴上
D.可选择两个变量中任意一个变量在y轴上
3.回归直线必过()
A.B.C.D.
4.越接近于1,两个变量的线性相关关系.
5.已知回归直线方程,则时,y的估计值为.
课后作业
一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有
缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x(转/秒)
16
14
12
有缺点零件数y(件)
11
9
(1)画散点图;
(2)求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制
在什么范围内?
1.1.1回归分析的基本思想及其初步应用
(二)
1.通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;
2.了解评价回归效果的三个统计量:
总偏差平方和、残差平方和、回归平方和.
3.会用相关指数,残差图评价回归效果.
(预习教材P4~P7,找出疑惑之处)
用相关系数r可衡量两个变量之间关系.r>
越接近于1,两个变量的线性相关关系,它们的散点图越接近;
,两个变量有关系.
评价回归效果的三个统计量:
总偏差平方和;
残差平方和;
回归平方和.
探究任务:
如何评价回归效果?
1、评价回归效果的三个统计量
(1)总偏差平方和:
(2)残差平方和:
(3)回归平方和:
2、相关指数:
表示对的贡献,公式为:
的值越大,说明残差平方和,说明模型拟合效果.
3、残差分析:
通过
来判断拟合效果.通常借助图实现.
残差图:
横坐标表示,纵坐标表示.
残差点比较均匀地落在的区的区域中,说明选用的模型,带状区域的宽度越,说明拟合精度越,回归方程的预报精度越.
例1关于与y有如下数据:
30
40
为了对、y两个变量进行统计分析,现有以下两种线性模型:
,,试比较哪一个模型拟合的效果更好?
分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.
例2假定小麦基本苗数x与成熟期有效苗穗y之间存在相关关系,今测得5组数据如下:
15.0
25.8
30.0
36.6
44.4
39.4
42.9
42.9
43.1
49.2
(2)求回归方程并对于基本苗数56.7预报期有效穗数;
(3)求,并说明残差变量对有效穗数的影响占百分之几.
(参考数据:
,)
练1.某班5名学生的数学和物理成绩如下表:
(导学案第1页例1)
(4)求学生A,B,C,D,E的物理成绩的实际成绩和回归直线方程预报成绩的差.并作出残差图评价拟合效果.
1.评价回归效果的三个统计量:
2.相关指数评价拟合效果:
3.残差分析评价拟合效果:
一般地,建立回归模型的基本步骤:
1、确定研究对象,明确解释、预报变量;
2、画散点图;
3、确定回归方程类型(用r判定是否为线性);
4、求回归方程;
5、评价拟合效果.
在现行回归模型中,相关指数表示解释变量对预报变量的贡献率,越接近于1,表示回归效果越好.如果某组数据可以采取几种不同的回归方程进行回归分析,则可以通过比较作出选择,即选择大的模型.
1.两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数如下,其中拟合
效果最好的模型是().
A.模型1的相关指数为0.98
B.模型2的相关指数为0.80
C.模型3的相关指数为0.50
D.模型4的相关指数为0.25
2.在回归分析中,残差图中纵坐标为().
A.残差B.样本编号C.xD.
3.通过来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分工称为().
A.回归分析B.独立性检验分析
C.残差分析D.散点图分析
4.越接近1,回归的效果.
5.在研究身高与体重的关系时,求得相关指数
,可以叙述为“身高解释了的体重变化,而随机误差贡献了剩余”所以身高对体重的效应比随机误差的.
(4)求相关指数评价模型.
1.1.1回归分析的基本思想及其初步应用(三)
2.通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.
3.了解常用函数的