工程师不可不知的开关电源关键设计二综述.docx

上传人:b****3 文档编号:1496351 上传时间:2022-10-22 格式:DOCX 页数:13 大小:175.47KB
下载 相关 举报
工程师不可不知的开关电源关键设计二综述.docx_第1页
第1页 / 共13页
工程师不可不知的开关电源关键设计二综述.docx_第2页
第2页 / 共13页
工程师不可不知的开关电源关键设计二综述.docx_第3页
第3页 / 共13页
工程师不可不知的开关电源关键设计二综述.docx_第4页
第4页 / 共13页
工程师不可不知的开关电源关键设计二综述.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

工程师不可不知的开关电源关键设计二综述.docx

《工程师不可不知的开关电源关键设计二综述.docx》由会员分享,可在线阅读,更多相关《工程师不可不知的开关电源关键设计二综述.docx(13页珍藏版)》请在冰豆网上搜索。

工程师不可不知的开关电源关键设计二综述.docx

工程师不可不知的开关电源关键设计二综述

工程师不可不知的开关电源关键设计

(二)

2012年02月09日09:

20来源:

电子发烧友网作者:

电子大兵我要评论(0)

牵涉到开关电源技术设计或分析成为电子工程师的心头之痛已是不争的事实,应广大网友迫切要求,电子发烧友推出开关电源设计整合系列和工程师们一起分享,请各位继续关注后续章节。

一、开关电源EMI的一些设计经验

  开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。

  1.开关电源的EMI源

  开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。

  

(1)功率开关管

  功率开关管工作在On-Off快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。

  

(2)高频变压器

  高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。

  (3)整流二极管

  整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高dv/dt,从而导致强电磁干扰。

  (4)PCB

  准确的说,PCB是上述干扰源的耦合通道,PCB的优劣,直接对应着对上述EMI源抑制的好坏。

  2.开关电源EMI传输通道分类

  

(一).传导干扰的传输通道

  

(1)容性耦合

  

(2)感性耦合

  (3)电阻耦合

  a.公共电源内阻产生的电阻传导耦合

  b.公共地线阻抗产生的电阻传导耦合

  c.公共线路阻抗产生的电阻传导耦合

  

(二).辐射干扰的传输通道

  

(1)在开关电源中,能构成辐射干扰源的元器件和导线均可以被假设为天线,从而利用电偶极子和磁偶极子理论进行分析;二极管、电容、功率开关管可以假设为电偶极子,电感线圈可以假设为磁偶极子;

  

(2)没有屏蔽体时,电偶极子、磁偶极子,产生的电磁波传输通道为空气(可以假设为自由空间);

  (3)有屏蔽体时,考虑屏蔽体的缝隙和孔洞,按照泄漏场的数学模型进行分析处理。

  3.开关电源EMI抑制的9大措施

  在开关电源中,电压和电流的突变,即高dv/dt和di/dt,是其EMI产生的主要原因。

实现开关电源的EMC设计技术措施主要基于以下两点:

  

(1)尽量减小电源本身所产生的干扰源,利用抑制干扰的方法或产生干扰较小的元器件和电路,并进行合理布局;

  

(2)通过接地、滤波、屏蔽等技术抑制电源的EMI以及提高电源的EMS。

  分开来讲,9大措施分别是:

  

(1)减小dv/dt和di/dt(降低其峰值、减缓其斜率)

  

(2)压敏电阻的合理应用,以降低浪涌电压

  (3)阻尼网络抑制过冲

  (4)采用软恢复特性的二极管,以降低高频段EMI

  (5)有源功率因数校正,以及其他谐波校正技术

  (6)采用合理设计的电源线滤波器

  (7)合理的接地处理

  (8)有效的屏蔽措施

  (9)合理的PCB设计

  4.高频变压器漏感的控制

  高频变压器的漏感是功率开关管关断尖峰电压产生的重要原因之一,因此,控制漏感成为解决高频变压器带来的EMI首要面对的问题。

  减小高频变压器漏感两个切入点:

电气设计、工艺设计!

  

(1)选择合适磁芯,降低漏感。

漏感与原边匝数平方成正比,减小匝数会显著降低漏感。

  

(2)减小绕组间的绝缘层。

现在有一种称之为“黄金薄膜”的绝缘层,厚度20~100um,脉冲击穿电压可达几千伏。

  (3)增加绕组间耦合度,减小漏感。

  5.高频变压器的屏蔽

  为防止高频变压器的漏磁对周围电路产生干扰,可采用屏蔽带来屏蔽高频变压器的漏磁场。

屏蔽带一般由铜箔制作,绕在变压器外部一周,并进行接地,屏蔽带相对于漏磁场来说是一个短路环,从而抑制漏磁场更大范围的泄漏。

  高频变压器,磁心之间和绕组之间会发生相对位移,从而导致高频变压器在工作中产生噪声(啸叫、振动)。

为防止该噪声,需要对变压器采取加固措施:

  

(1)用环氧树脂将磁心(例如EE、EI磁心)的三个接触面进行粘接,抑制相对位移的产生;

  

(2)用“玻璃珠”(Glassbeads)胶合剂粘结磁心,效果更好。

二、半桥式开关电源变压器参数计算方法

  半桥式开关电源变压器参数的计算

  半桥式变压器开关电源的工作原理与推挽式变压器开关电源的工作原理是非常接近的,只是变压器的激励方式与工作电源的接入方式有点不同;因此,用于计算推挽式变压器开关电源变压器初级线圈N1绕组匝数的数学表达式,只需稍微修改就可以用于半桥式变压器开关电源变压器初级线圈N1绕组匝数的计算。

  A)半桥式开关电源变压器初级线圈匝数的计算

  半桥式变压器开关电源与推挽式开关电源一样,也属于双激式开关电源,因此用于半桥式开关电源的变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,并且变压器铁心可以不用留气隙。

半桥式开关电源变压器的计算方法与前面推挽式开关电源变压器的计算方法基本相同,只是直接加到变压器初级线圈两端的电压仅等于输入电压Ui的二分之一。

根据推挽式开关电源变压器初级线圈匝数计算公式(1-150)和(1-151)式:

  

  设直接加到半桥式开关电源变压器初级线圈两端的电压为Uab,且Uab=Ui/2,则上面(1-150)和(1-151)式可以改写为:

  

  上面(1-174)和(1-175)式就是计算半桥式开关电源变压器初级线圈N1绕组匝数的公式。

式中,N1为变压器初级线圈N1绕组的最少匝数,S为变压器铁心的导磁面积(单位:

平方厘米),Bm为变压器铁心的最大磁感应强度(单位:

高斯);Uab为加到变压器初级线圈N1绕组两端的电压,Uab=Ui/2,Ui为开关电源的工作电压,单位为伏;τ=Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:

秒);

  F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F和τ取值要预留20%左右的余量。

式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:

长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。

  B)交流输出半桥式开关电源变压器初、次级线圈匝数比的计算

  半桥式变压器开关电源如果用于DC/AC或AC/AC逆变电源,即把直流逆变成交流,或把交流整流成直流后再逆变成交流,这种逆变电源一般输出电压都不需要调整,因此电路相对比较简单,工作效率很高。

请参考图1-36、图1-38、图1-39。

  用于逆变的半桥式变压器开关电源一般输出电压uo都是占空比等于0.5的方波,由于方波的波形系数(有效值与半波平均值之比)等于1,因此,方波的有效值Uo与半波平均值Upa相等,并且方波的幅值Up与半波平均值Upa也相等。

所以,只要知道输出电压的半波平均值就可以知道有效值,再根据半波平均值,就可以求得半桥式开关电源变压器初、次级线圈匝数比。

  根据前面分析,半桥式变压器开关电源的输出电压uo,主要由开关电源变压器次级线圈输出的正激电压来决定。

因此,根据(1-158)、(1-159)、(1-161)等式其中一式就可以出半桥式变压器开关电源的输出电压的半波平均值。

由此求得半桥式逆变开关电源变压器初、次级线圈匝数比:

  n=N2/N1=2Uo/Ui=2Upa/Ui——次/初级变压比,D=0.5时(1-176)

  (1-176)式就是计算半桥式逆变开关电源变压器初、次级线圈匝数比的公式。

式中,N1为变压器初级线圈N1绕组的匝数,N2为变压器次级线圈的匝数,Uo输出电压的有效值,Ui为直流输入电压,Upa输出电压的半波平均值。

  (1-176)式还没有考虑变压器的工作效率,当把变压器的工作效率也考虑进去时,最好在(1-176)式的右边乘以一个略大于1的系数。

  C)直流输出电压非调整式半桥开关电源变压器初、次级线圈匝数比的计算

  直流输出电压非调整式半桥开关电源,就是在DC/AC逆变电源的交流输出电路后面再接一级整流滤波电路。

请参考1-43、图1-44、图1-45。

这种直流输出电压非调整式半桥开关电源的控制开关K1、K2的占空比与DC/AC逆变电源一样,一般都是0.5,因此,直流输出电压非调整式半桥开关电源变压器初、次级线圈匝数比可直接利用(1-176)式来计算。

即:

  n=N2/N1=2Uo/Ui=2Upa/Ui——次/初级变压比,D=0.5时(1-176)

  不过,在低电压、大电流输出的情况下,一定要考虑整流二极管的电压降和变压器的工作效率。

  D)直流输出电压可调整式半桥开关电源变压器初、次级线圈匝数比的计算

  直流输出电压可调整式半桥开关电源的功能就要求输出电压可调,因此,半桥式变压器开关电源的两个控制开关K1、K2的占空比必须要小于0.5;因为半桥式变压器开关电源正、反激两种状态都有电压输出,所以在同样输出电压(平均值)的情况下,两个控制开关K1、K2的占空比相当于要小一倍。

当要求输出电压可调范围为最大时,占空比最好取值为0.25。

根据(1-140)和(1-145)式,并把输入电压Ui换成Uab可求得:

  

  (1-177)、(1-178)式,就是计算直流输出电压可调整式半桥开关电源变压器初、次级线圈匝数比的公式。

式中,N1为变压器初级线圈N1绕组的最少匝数,N2为变压器次级线圈的匝数,Uo为直流输出电压,Uab为加到变压器初级线圈N1绕组两端的电压,Uab=Ui/2,Ui为开关电源的工作电压。

  同样,在低电压、大电流输出的情况下,一定要考虑变压器的工作效率以及整流二极管的电压降和开关器件接通时的电压降。

三、基本电子电路:

开关电源讲解

  做硬件工程师的,几乎都碰到过开关电源。

网上的资料也很多。

笔者也经常接触开关电源,从工程应用实践中自己总结了一些开关电源的心得。

本文力求浅显易懂。

但愿对开关电源比较陌生的工程师能有所帮助。

开关电源是一个很大的领域,本文的描述仅见一斑,有不当之处,望以斧正之。

  1:

常用的开关电源的原理——单端自激boost升压电路

  

  如上图,开关电源利用电感电流不能瞬间改变的原理,用ctrl信号打开三极管,使得Vin通过电感和三极管向地流动。

由于电感电流不能突变,因此,这个回路不能理解成短路,应理解成给电感充能。

充能是通过电感流过的电流不断增大体现的,电流越大,电感的储能越多。

  当电感电流增加到一定程度,用ctrl关闭三极管。

则电感电流的回地的路就被切断。

同样由于电感电流不能突变,因此,电流就会通过二极管流向电容。

这样就完成一次电感通过二极管给电容充电的过程。

Ctrl信号周期性不停止的复现,宏观上就形成从vin不断流向电容的电流。

这个过程与vout和vin电压孰高孰低无关。

意味着可升压,也可降压。

  上面说的切断电感电流,迫使电流流向改变,一般叫做“反激”,上图的电感只有一个,反激点只有一个,叫做单端。

有的电路用2个电感,交替进行电流流动。

做直流逆变交流时,一般用2个电感,形成推挽效果。

  2:

如何实现稳压

  上图是原理。

由于vout的负载不确定,因此,vout不可能稳定在我们期望的电压上,可能是升压,也可能是降压。

解决这个问题的办法是利用vout的电压进行反馈。

当vout电压低于期望值时,反馈信号就会调整ctrl,使它打开三极管的时间相对延长。

则电感

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1