数学二次函数中三角形面积最大值综合题Word文档下载推荐.docx
《数学二次函数中三角形面积最大值综合题Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《数学二次函数中三角形面积最大值综合题Word文档下载推荐.docx(19页珍藏版)》请在冰豆网上搜索。
∴点A(0,4),OA=4,
∵MN∥AC,
∴.4分
∵OA=4,BC=10,
∴.5分
∴.6分
∴当n=3时,即N(3,0)时,△AMN的面积最大.7分
(3)当N(3,0)时,N为BC边中点.
∴M为AB边中点,∴8分
∵,
∴9分
∴.10分
24(2017).抛物线经过点和点。
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线相交于两点,点是抛物线上的动点且位于轴下方。
直线轴,分别与轴和直线交与点。
①连结,如图12-1,在点运动过程中,的面积是否存在最大值?
若存在,求出这个最大值;
若不存在,说明理由;
②连结,过点作,垂足为点,如图12-2。
是否存在点,使得与相似?
若存在,求出满足条件的点的坐标;
若不存在,说明理由。
[分析]
(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;
(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;
②当△CNQ与△PBM相似时有=或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.
[解答]解:
(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),
∴,解得,
∴该抛物线对应的函数解析式为y=x2﹣x+3;
(2)①∵点P是抛物线上的动点且位于x轴下方,
∴可设P(t,t2﹣t+3)(1<t<5),
∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,
∴M(t,0),N(t,t+3),
∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+
联立直线CD与抛物线解析式可得,解得或,
∴C(0,3),D(7,),
分别过C、D作直线PN的直线,垂足分别为E、F,如图1,
则CE=t,DF=7﹣t,
∴S△PCD=S△PCN+S△PDN=PNCE+PNDF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,
∴当t=时,△PCD的面积有最大值,最大值为;
②存在.
∵∠CQN=∠PMB=90°
∴当△CNQ与△PBM相似时,有=或=两种情况,
∵CQ⊥PM,垂足为Q,
∴Q(t,3),且C(0,3),N(t,t+3),
∴CQ=t,NQ=t+3﹣3=t,
∴=,
∵P(t,t2﹣t+3),M(t,0),B(5,0),
∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,
当=时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);
当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);
综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).
[点评]本题为二次函数的综合应用,涉与待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想与分类讨论思想等知识.在
(1)中注意待定系数法的应用,在
(2)①中用P点坐标表示出△PCD的面积是解题的关键,在
(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.
24.在平面直角坐标系中,规定:
抛物线的伴随直线为.例如:
抛物线的伴随直线为,即
(1)在上面规定下,抛物线的顶点为.伴随直线为;
抛物线与其伴随直线的交点坐标为和;
(2)如图,顶点在第一象限的抛物线与其伴随直线相交于点(点在点的右侧)与轴交于点
①若求的值;
②如果点是直线上方抛物线的一个动点,的面积记为,当取得最大值时,求的值.
[分析]
(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;
(2)①可先用m表示出A、B、C、D的坐标,利用勾股定理可表示出AC2、AB2和BC2,在Rt△ABC中由勾股定理可得到关于m的方程,可求得m的值;
②由B、C的坐标可求得直线BC的解析式,过P作x轴的垂线交BC于点Q,则可用x表示出PQ的长,进一步表示出△PBC的面积,利用二次函数的性质可得到m的方程,可求得m的值.
(1)∵y=(x+1)2﹣4,
∴顶点坐标为(﹣1,﹣4),
由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x﹣3,
联立抛物线与伴随直线的解析式可得,解得或,
∴其交点坐标为(0,﹣3)和(﹣1,﹣4),
故答案为:
(﹣1,﹣4);
y=x﹣3;
(0,﹣3);
(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,
∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,
∴A(1,﹣4m),B(2,﹣3m),
在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,
∴C(﹣1,0),D(3,0),
∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,
∵∠CAB=90°
∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,
∴当∠CAB=90°
时,m的值为﹣;
②设直线BC的解析式为y=kx+b,
∵B(2,﹣3m),C(﹣1,0),
∴直线BC解析式为y=﹣mx﹣m,
过P作x轴的垂线交BC于点Q,如图,
∵点P的横坐标为x,
∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),
∵P是直线BC上方抛物线上的一个动点,
∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],
∴S△PBC=×
[(2﹣(﹣1)]PQ=(x﹣)2﹣m,
∴当x=时,△PBC的面积有最大值﹣m,
∴S取得最大值时,即﹣m=,解得m=﹣2.
[点评]本题为二次函数的综合应用,涉与待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识.在
(1)中注意伴随直线的定义的理解,在
(2)①中分别求得A、B、C、D的坐标是解题的关键,在
(2)②中用x表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.
24(2017).如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:
y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.
(1)求抛物线的解析式;
(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;
(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;
(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?
若存在,求出点Q的坐标与△QBF的最大面积;
若不存在,请说明理由.
[考点]HF:
二次函数综合题.
[分析]
(1)利用待定系数法求抛物线解析式;
(2)设B(x,x2+1),而F(0,2),利用两点间的距离公式得到BF2=x2+(x2+1﹣2)2=,再利用配方法可得到BF=x2+1,由于BC=x2+1,所以BF=BC;
(3)如图1,利用菱形的性质得到CB=CF=PF,加上CB=FB,则可判断△BCF为等边三角形,所以∠BCF=60°
,则∠OCF=30°
,于是可计算出CF=4,所以PF=CF=4,从而得到自然数m的值为6;
(4)作QE∥y轴交AB于E,如图2,先解方程组得B(1+,3+),设Q(t,t2+1),则E(t,t+2),则EQ=﹣t2+t+1,则S△QBF=S△EQF+S△EQB=•(1+)•EQ=•(1+)•)(﹣t2+t+1),然后根据二次函数的性质解决问题.
(1)把点(﹣2,2),(4,5)代入y=ax2+c得,解得,
所以抛物线解析式为y=x2+1;
(2)BF=BC.
理由如下:
设B(x,x2+1),而F(0,2),
∴BF2=x2+(x2+1﹣2)2=x2+(x2﹣1)2=(x2+1)2,
∴BF=x2+1,
∵BC⊥x轴,
∴BC=x2+1,
∴BF=BC;
(3)如图1,m为自然数,则点P在F点上方,
∵以B、C、F、P为顶点的四边形是菱形,
∴CB=CF=PF,
而CB=FB,
∴BC=CF=BF,
∴△BCF为等边三角形,
∴∠BCF=60°
∴∠OCF=30°
在Rt△OCF中,CF=2OF=4,
∴PF=CF=4,
∴P(0,6),
即自然数m的值为6;
(4)作QE∥y轴交AB于E,如图2,
当k=1时,一次函数解析式为y=x+2,
解方程组得或,则B(1+,3+),
设Q(t,t2+1),则E(t,t+2),
∴EQ=t+2﹣(t2+1)=﹣t2+t+1,
∴S△QBF=S△EQF+S△EQB=•(1+)•EQ=•(1+))(﹣t2+t+1)=﹣(t﹣2)2++1,
当t=2时,S△QBF有最大值,最大值为+1,此时Q点坐标为(2,2).
25(2017东营).如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°
,抛物线y=ax2+bx+经过A,B两点.
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.
[分析]
(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°
,则在Rt△AOC中可得∠ACO=30°
,利用三角函数的定义可求得OA,则可求得A点坐标;
(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;
(3)由平行线的性质可知∠MDH=∠BCO=60°
,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.
(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,
∴B(3,0),C(0,),
∴OB=3,OC=,
∴tan∠BCO==,
∴∠BCO=60°
∵∠ACB=90°
∴∠ACO=30°
∴=tan30°
=,即=,解得AO=1,
∴A(﹣1,0);
(2)∵抛物线y=ax2+bx+经过A,B两点,
∴抛物线解析式为y=﹣x2+x+;
(3)∵MD∥y轴,MH⊥BC,
∴∠MDH=∠BCO=60°
,则∠DMH=30°
∴DH=DM,MH=DM,
∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,
∴当DM有最大值时,其周长有最大值,
∵点M是直线BC上方抛物线上的一点,
∴可设M(t,﹣t2+t+),则D(t,﹣t+),
∴DM=﹣t2+t+),则D(t,﹣t+),
∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,
∴当t=时,DM有最大值,最大值为,
此时D