溴化锂吸收式制冷机原理.docx

上传人:b****3 文档编号:1480605 上传时间:2022-10-22 格式:DOCX 页数:14 大小:27.57KB
下载 相关 举报
溴化锂吸收式制冷机原理.docx_第1页
第1页 / 共14页
溴化锂吸收式制冷机原理.docx_第2页
第2页 / 共14页
溴化锂吸收式制冷机原理.docx_第3页
第3页 / 共14页
溴化锂吸收式制冷机原理.docx_第4页
第4页 / 共14页
溴化锂吸收式制冷机原理.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

溴化锂吸收式制冷机原理.docx

《溴化锂吸收式制冷机原理.docx》由会员分享,可在线阅读,更多相关《溴化锂吸收式制冷机原理.docx(14页珍藏版)》请在冰豆网上搜索。

溴化锂吸收式制冷机原理.docx

溴化锂吸收式制冷机原理

溴化锂吸收式制冷机原理

制冷原理

一、一般制冷原理

根据热力学的基本原理我们知道,一般的制冷循环由四个主要部件组成:

压缩机、冷凝器、节流阀和蒸发器,其制冷原理如下

一般制冷机的制冷原理压缩机的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。

压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流阀节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入蒸发器的入口,从而完成制冷循环。

根据在冷凝器中冷却冷剂蒸汽的流体介质不同,可分为空冷式和水冷式。

空冷式的冷却介质为空气,而水冷式的冷却介质为水。

在蒸发器中使冷剂介质吸热蒸发的介质称为冷媒。

如冷媒为水,就称为冷媒水。

作为冷媒还有盐水等。

能作为冷剂的工质很多,既有氟利昂之类的工质,也可是水等。

压缩机是消耗能源的装置,它的目的是使压力较低的工质蒸汽变成压力较高的工质蒸汽。

实际上,能达到上述目的不只是压缩机,也有其他手段

二、制冷的能源

制冷实际上是一个能量的转换过程。

在制冷机中,把压缩机(或能起到压缩机作用的其他部件)中消耗的能量转换成冷能(其温度低于环境温度)。

所以,原则上讲,只要是有一定品质的能量,都能作为压缩机的能源。

压缩机消耗的是电能或机械能。

而有一定压力和较高温度的蒸汽也是一种能源,是否也可转变为冷能呢?

还有其他一些能源,如太阳能、化学能等,是否也可转变为冷能呢?

答案是肯定的。

如利用蒸汽作为能源的溴化锂吸收式制冷机和蒸汽喷射式制冷机等。

溴化锂吸收式制冷机中是怎样利用蒸汽作为能源取代压缩机的呢?

三、水为什么能作为能源

目前,在一般制冷机中使用的是象氟利昂之类的工质。

实际上,能作为制冷剂的工质有很多,只要它们具有以下条件。

1.在要求的温度范围你内,其状态会发生变化(相变);

2.有较大的蒸发潜热;

3.工作压力适中;

4.物理、化学性质稳定;

5.经济、实用。

可见,水就具有以上条件。

它在一定的压力下,在适当的温度范围内,能够容易地由液态转变成汽态,或者相反;其蒸发潜热也较大,工作压力和物理、化学性质十分稳定,且绝对经济、实用。

所以,水是一种非常合适的制冷剂。

但它也有一定的局限性:

0℃以下时,它能转变为固体,所以,以水作为制冷剂的制冷机,不能制取0℃以下的冷媒。

四、吸收式制冷机中的吸收剂的循环为什么能起到压缩机的作用

压缩机的作用是把压力较低的冷剂蒸汽变成压力较高的冷剂蒸汽。

所以,只要能将压力较低的冷剂蒸汽变成压力较高的冷剂蒸汽的部件都可取代压缩机。

下面就是一例。

我们都知道,食盐在夏天的时候容易吸收空气中的水蒸汽而变得比较潮湿。

这也是一般盐类所具有的性质。

溴化锂也是一种盐,它也有吸收水蒸汽的能力,且其吸收水蒸汽的能力远大于食盐。

不但固态的溴化锂能吸收水蒸汽,浓度较高的溴化锂水溶液(以下简称溴化锂溶液)也具有较强的吸收水蒸汽的能力。

溴化锂溶液所处的容器压力较低且水蒸汽的分压力较高时,溴化锂溶液的吸收能力较强。

吸收水蒸汽后,溴化锂溶液的浓度变低,需浓缩后才能循环使用。

浓缩可在一个压力和温度都较高的容器中进行。

而浓缩时又产生一定数量的水蒸汽。

所以,溴化锂溶液可在低压下吸收水蒸汽,而在高压下产生水蒸汽。

也就是说,溴化锂溶液有把低压水蒸汽变成高压水蒸汽的能力。

因此,溴化锂溶液可把低压制剂蒸汽变成高压冷剂蒸汽从而取代压缩机。

吸收水蒸汽的容器叫作吸收器。

产生水蒸汽的容器叫作发生器。

在吸收器中吸收了水蒸汽的浓溶液变成了稀溶液,由溶液泵送至发生器,由其中的高温蒸汽加热沸腾浓缩,并产生温度较高的高压冷剂蒸汽,稀溶液的浓度也变高,浓缩后的浓溶液经节流阀送至吸收器,吸收来自蒸发器的低压冷剂蒸汽,从而达到了把低压冷剂蒸汽变成高压冷剂蒸汽,取代压缩机的目的。

图1.5.1吸收器和发生器取代压缩机的原理图

五、溴化锂吸收式制冷机原理

溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。

为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。

发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。

如此循环达到连续制冷的目的。

可见溴化锂吸收式制冷机主要是由吸收器、发生器、冷凝器和蒸发器四部分组成的。

 

从吸收器出来的溴化锂稀溶液,由溶液泵(即发生器泵),升压经溶液热交换器,被发生器出来的高温浓溶液加热温度提高后,进入发生器。

在发生器中受到传热管内热源蒸汽加热,溶液温度提高直至沸腾,溶液中的水份逐渐蒸发出来,而溶液浓度不断增大。

单效溴化锂吸收式制冷机的热源蒸汽压力一般为0.098MPa(表压)。

发生器中蒸发出来的冷剂水蒸气向上经挡液板进入冷凝器,挡液板起汽液分离作用,防止液滴随蒸汽进入凝凝器。

冷凝器的传热管内通入冷却水,所以管外冷剂水蒸气被冷却水冷却,冷凝成水,此即冷剂水。

积聚在冷凝器下部的冷剂水经节流后流入蒸发器内,因为冷凝器中的压力比蒸发器中的压力要高。

如:

当冷凝器温度为45℃时,冷凝压力为9580Pa(71.9mmHg);蒸发温度为5℃时,蒸发压力872Pa(6.45mmHg)。

U型管是起液封作用的,防止冷凝器中的蒸汽直接进入蒸发器。

 

冷剂水进入蒸发器后,由于压力降低首先闪蒸出部分冷剂水蒸气。

因蒸发器为喷淋式热交换器,喷啉量要比蒸发量大许多倍,故大部分冷剂水是聚集在蒸发器的水盘内的,然后由冷剂水泵升压后送入蒸发器的喷淋管中,经喷嘴喷淋到管簇外表面上,在吸取了流过管内的冷媒水的热量后,蒸发成低压的冷剂水蒸气。

由于蒸发器内压力较低,故可以得到生产工艺过程或空调系统所需要的低温冷媒水,达到制冷的目的。

例如蒸发器压力为872Pa时,冷剂水的蒸发温度为5℃,这时可以得到7℃的冷媒水。

蒸发出来的冷剂蒸汽经挡液板将其夹杂的液滴分离后进入吸收器,被由吸收器泵送来并均匀喷淋在吸收管簇外表的中间溶液所吸收,溶液重新变稀。

中间溶液是由来自溶液热交换器放热降温后的浓溶液和吸收器液囊中的稀溶液混合得到的。

为保证吸收过程的不断进行,需将吸收过程所放出的热量由传热管内的冷却水及时带走。

中间溶液吸收了一定量的水蒸气后成为稀溶液,聚集在吸收器底部液囊中,再由发生器泵送到发生器,如此循环不已。

 

由上述循环工作过程可见,吸收式制冷机与压缩式制冷机在获取冷量的原理上是相同的,都是利用高压液体制冷剂经节流阀(或U型管)节流降压后,在低压下蒸发来制取冷量,它们都有起同样作用的冷凝、蒸发和节流装置。

而主要区别在于由低压冷剂蒸汽如何变成高压蒸汽所采用的方法不同,压缩式制冷机是通过原动机驱动压缩机来实现的,而吸收式制冷机是通过吸收器,溶液泵和发生器等设备来实现的。

从吸收器出来的稀溶液温度较低,而稀溶液温度越低,则在发生器中需要更多热量。

自发生器出来的浓溶液温度较高,而浓溶液温度越高,在吸收器中则要求更多的冷却水量。

因此设置溶液交换器,由温度较高的浓溶液加热温度较低的稀溶液,这样既减少了发生器加热负荷,也减少了吸收器的冷却负荷,可谓一举两得。

 

溴化锂吸收式制冷机除了上述冷剂水和溴化锂溶液两个内部循环外,还有三个系统与外部相联,这就是:

①热源系统;

②冷却水系统;

③冷媒水系统。

 

热源蒸汽(或热水)通入发生器,在管内流过,加热管外溶液使其沸腾并蒸发出冷剂蒸汽,而热源蒸汽放出汽化潜热后凝结成水排出。

一般情况下,应将该凝结水回收并送回锅炉加以利用。

 

在吸收器中溶液吸收来自蒸发器的低压冷剂蒸汽,是个放热过程。

为使吸收过程连续进行下去,需不断加以冷却。

在冷凝器中也需冷却水,以便将来自发生器的高压冷剂蒸汽变成冷剂水。

冷却水先流经吸收器后,再流过冷凝器,出冷凝器的冷却水温度较高,一般是通入冷却水塔,降温后再打入吸收器循环使用。

 

来自用户的冷媒水通入蒸发器的管簇内,由于管外冷剂水的蒸发吸热,使冷媒水降温。

制冷机的工作目的是获得低温(如7℃)的冷媒水,冷媒水就是冷量的媒体。

 

六、溴化锂吸收式制冷机溶液循环

在吸收式制冷机中,溶液的循环是至关重要的。

因为它是用溶液的浓缩和吸收而使低压蒸汽变成高压蒸汽,从而取代压缩机的的关键问题所在。

在溴化锂吸收式制冷机中,发生器和吸收器中起到上述作用的是溴化锂溶液,它的吸收水蒸汽的能力很强。

吸收式制冷机的溶液循环原理如图2.2.1所示。

图2.2.1吸收式制冷机的溶液循环

七、溴化锂吸收式制冷机中的制冷剂循环

溴化锂吸收式制冷机中的制冷剂就是水。

水在制冷循环中状态不断改变,并利用其在蒸发时的吸热而产生制冷的。

首先,从发生器中产生的高压冷剂蒸汽在冷凝器中被冷却水冷凝成冷剂水。

因其压力较高,故通过一个节流阀送入蒸发器,在蒸发器中吸收管内冷媒水的热量而蒸发,蒸发后的冷剂蒸汽压力较低,通过挡水板送入吸收器以被较浓的溴化锂溶液吸收,而后又在发生器产生出压力较高的冷剂蒸汽,从而完成循环。

在溴化锂吸收式制冷机中,蒸发器中的压力非常低,以至于水在5℃时即达到饱和而蒸发,在蒸发时吸收管内冷媒水的热量而使其温度降低,从而达到制冷的目的。

一般而言,冷媒水进蒸发器的温度为12℃,放热后温度降低到7℃,由冷媒水泵送给用户使用。

在吸收器中吸收了低压水蒸汽的溴化锂溶液浓度变小,温度也较低,被溶液泵送往使之浓缩的发生器中,被管内流动的高压工作蒸汽加热至对应压力下的沸点,使之沸腾并产生冷剂蒸汽,因发生器中的压力较高,所以冷剂蒸汽的压力也较高,也就是说通过泵的升压和工作蒸汽的加热,使低压蒸汽的压力升高。

溶液沸腾产生出冷剂蒸汽后,浓度和温度都有所升高,又具有了吸收水蒸汽的能力。

因发生器中的压力比吸收器中的压力要高得多,故在送往吸收器中让其吸收水蒸汽时必须通过节流阀降压。

在吸收器中,溶液被喷淋在内通冷却水的传热管管簇上,因溶液在吸收水蒸汽时要放出大量的吸收热,故需大量的冷却水进行冷却,实验和理论都表明,溶液的浓度越高、温度越低,吸收水蒸汽的能力就越强,所以,在实际中,要努力提高其浓度、降低其温度,但要注意避免因浓度过高、温度过低而结晶。

另外,从图中不难看出,一方面稀溶液温度较低,送往发生器后需消耗能量对其加热;而另一方面,浓溶液的温度较高,在吸收器中需冷却才能有较强的吸收水蒸汽的能力,所以,如能使浓溶液和稀溶液进行热交换,无疑可提高机组的性能系数。

因此,在实际的溴化锂吸收式制冷机中,一般都设有溶液热交换器(如图2.2.2所示)。

在溶液热交换器中,稀溶液在管内流动,而浓溶液的管外(壳程)流动,从而达到热交换的目的。

八、单效溴化锂吸收式制冷机结构形式

单效溴化锂吸收式制冷机一般有单筒型和双筒型两种型式。

单筒型溴化锂吸收式制冷机主要用于小型机组(1000kW以下);而双筒型可用于稍大一点的机组,但由于其性能系数(COP)较小(〈0.8),故现已被性能系数(COP)较大的双效溴化锂吸收式制冷机取代。

单筒型溴化锂吸收式制冷机各换热设备的基本布置型式有五种,是单筒型一种较早的布置方式,这种结构型式不够紧凑,蒸发器的冷剂蒸汽通道面积又较小,故目前已很少采用;

在单效蒸汽型溴化锂吸收式制冷机中也是一种较早的布置方式,这种方式能使蒸发器与吸收器之间的流通面积增加,流阻减小,且减少了一个水槽,布置也较方便,但因发生器中汽流上升高度较小,溴化锂溶液的液滴易进入冷凝器,造成冷剂水的污染,设计时应注意加强挡液措施。

这种布置方式目前在热水型溴化锂吸收式制冷机中应用较多,因为在热水型溴化锂吸收式制冷机中,发生器中一般管子数较多,如发生器和冷凝器上下布置则发生器中在垂直方向管排数较多,由于液位的影响不宜使用沉浸式发生器,只

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1