高中生物选修3教材课后习题答案Word文件下载.docx

上传人:b****3 文档编号:14791213 上传时间:2022-10-24 格式:DOCX 页数:26 大小:177.38KB
下载 相关 举报
高中生物选修3教材课后习题答案Word文件下载.docx_第1页
第1页 / 共26页
高中生物选修3教材课后习题答案Word文件下载.docx_第2页
第2页 / 共26页
高中生物选修3教材课后习题答案Word文件下载.docx_第3页
第3页 / 共26页
高中生物选修3教材课后习题答案Word文件下载.docx_第4页
第4页 / 共26页
高中生物选修3教材课后习题答案Word文件下载.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

高中生物选修3教材课后习题答案Word文件下载.docx

《高中生物选修3教材课后习题答案Word文件下载.docx》由会员分享,可在线阅读,更多相关《高中生物选修3教材课后习题答案Word文件下载.docx(26页珍藏版)》请在冰豆网上搜索。

高中生物选修3教材课后习题答案Word文件下载.docx

…CTTAAG…;

3和6能连接形成…GCGC…

…CGCG…;

1和5能连接形成…CTGCAG…

…GACGTC…。

2.联系你已有的知识,想一想,为什么细菌中限制酶不剪切细菌本身的DNA?

提示:

迄今为止,基因工程中使用的限制酶绝大部分都是从细菌或霉菌中提取出来的,它们各自可以识别和切断DNA上特定的碱基序列。

细菌中限制酶之所以不切断自身DNA,是因为微生物在长期的进化过程中形成了一套完善的防御机制,对于外源入侵的DNA可以降解掉。

生物在长期演化过程中,含有某种限制酶的细胞,其DNA分子中或者不具备这种限制酶的识别切割序列,或者通过甲基化酶将甲基转移到所识别序列的碱基上,使限制酶不能将其切开。

这样,尽管细菌中含有某种限制酶也不会使自身的DNA被切断,并且可以防止外源DNA的入侵(本题不要求学生回答的完全,教师可参考教师用书中的提示,根据学生的具体情况,给予指导。

上述原则也应适用于其他章节中有关问题的回答)。

3.天然的DNA分子可以直接用做基因工程载体吗?

为什么?

基因工程中作为载体使用的DNA分子很多都是质粒(plasmid),即独立于细菌拟核DNA之外的一种可以自我复制、双链闭环的裸露的DNA分子。

是否任何质粒都可以作为基因工程载体使用呢?

其实不然,作为基因工程使用的载体必需满足以下条件。

(1)载体DNA必需有一个或多个限制酶的切割位点,以便目的基因可以插入到载体上去。

这些供目的基因插入的限制酶的切点所处的位置,还必须是在质粒本身需要的基因片段之外,这样才不至于因目的基因的插入而失活。

(2)载体DNA必需具备自我复制的能力,或整合到受体染色体DNA上随染色体DNA的复制而同步复制。

(3)载体DNA必需带有标记基因,以便重组后进行重组子的筛选。

(4)载体DNA必需是安全的,不会对受体细胞有害,或不能进入到除受体细胞外的其他生物细胞中去。

(5)载体DNA分子大小应适合,以便提取和在体外进行操作,太大就不便操作。

实际上自然存在的质粒DNA分子并不完全具备上述条件,都要进行人工改造后才能用于基因工程操作。

4.网上查询:

DNA连接酶有连接单链DNA的本领吗?

迄今为止,所发现的DNA连接酶都不具有连接单链DNA的能力,至于原因,现在还不清楚,也许将来会发现可以连接单链DNA的酶。

(二)寻根问底

1.根据你所掌握的知识,你能分析出限制酶存在于原核生物中的作用是什么吗?

原核生物容易受到自然界外源DNA的入侵,但是,生物在长期的进化过程中形成了一套完善的防御机制,以防止外来病原物的侵害。

限制酶就是细菌的一种防御性工具,当外源DNA侵入时,会利用限制酶将外源DNA切割掉,以保证自身的安全。

所以,限制酶在原核生物中主要起到切割外源DNA、使之失效,从而达到保护自身的目的。

2.DNA连接酶与DNA聚合酶是一回事吗?

不是一回事。

基因工程中所用的连接酶有两种:

一种是从大肠杆菌中分离得到的,称之为E·

coliDNA连接酶。

另一种是从T4噬菌体中分离得到,称为T4DNA连接酶。

这两种连接酶催化反应基本相同,都是连接双链DNA的缺口(nick),而不能连接单链DNA。

DNA连接酶和DNA聚合酶都是形成磷酸二酯键(在相邻核苷酸的3位碳原子上的羟基与5位碳原子上所连磷酸基团的羟基之间形成),那么,二者的差别主要表现在什么地方呢?

(1)DNA聚合酶只能将单个核苷酸加到已有的核酸片段的3′末端的羟基上,形成磷酸二酯键;

而DNA连接酶是在两个DNA片段之间形成磷酸二酯键,不是在单个核苷酸与DNA片段之间形成磷酸二酯键。

(2)DNA聚合酶是以一条DNA链为模板,将单个核苷酸通过磷酸二酯键形成一条与模板链互补的DNA链;

而DNA连接酶是将DNA双链上的两个缺口同时连接起来。

因此DNA连接酶不需要模板。

此外,二者虽然都是由蛋白质构成的酶,但组成和性质各不相同。

(三)模拟制作讨论题

1.你模拟插入的DNA片段能称得上一个基因吗?

不能。

因为一般基因有上千个碱基对。

2.如果你操作失误,碱基不能配对。

可能是什么原因造成的?

可能是剪切位点或连接位点选得不对(也可能是其他原因)。

(四)旁栏思考题

想一想,具备什么条件才能充当“分子运输车”?

能自我复制、有一个或多个切割位点、有标记基因位点及对受体细胞无害等。

♫1.2基因工程的基本操作程序

1.作为基因工程表达载体,只需含有目的基因就可以完成任务吗?

不可以。

因为目的基因在表达载体中得到表达并发挥作用,还需要有其他控制元件,如启动子、终止子和标记基因等。

必须构建上述元件的主要理由是:

(1)生物之间进行基因交流,只有使用受体生物自身基因的启动子才能比较有利于基因的表达;

(2)通过cDNA文库获得的目的基因没有启动子,只将编码序列导入受体生物中无法转录;

(3)目的基因是否导入受体生物中需要有筛选标记;

(4)为了增强目的基因的表达水平,往往还要增加一些其他调控元件,如增强子等;

(5)有时需要确定目的基因表达的产物存在于细胞的什么部位,往往要加上可以标识存在部位的基因(或做成目的基因与标识基因的融合基因),如绿色荧光蛋白基因等。

2.根据农杆菌可将目的基因导入双子叶植物的机理,你能分析出农杆菌不能将目的基因导入单子叶植物的原因吗?

若想将一个抗病基因导入单子叶植物,如小麦,从理论上说,你应该如何做?

农杆菌可分为根瘤农杆菌和发根农杆菌,在植物基因工程中以根瘤农杆菌的Ti质粒介导的遗传转化最多。

根瘤农杆菌广泛存在于双子叶植物中。

据不完全统计,约有93属643种双子叶植物对根瘤农杆菌敏感。

裸子植物对该菌也敏感。

当这些植物被该菌侵染后会诱发肿瘤。

近年来,也有报道该菌对单子叶植物也有侵染能力。

根瘤农杆菌侵染植物是一个非常复杂的过程。

根瘤农杆菌具有趋化性,即植物的受伤组织会产生一些糖类和酚类物质吸引根瘤农杆菌向受伤组织集中。

研究证明,主要酚类诱导物为乙酰丁香酮和羧基乙酰丁香酮,这些物质主要在双子叶植物细胞壁中合成,通常不存在于单子叶植物中,这也是单子叶植物不易被根瘤农杆菌侵染的原因。

近年来还发现一些中性糖,如L-阿拉伯糖、D-木糖等也有诱导作用。

酚类物质和糖类物质既可以作为根瘤农杆菌的趋化物,又可以作为农杆菌中Ti质粒上Vir区(毒性区)基因的诱导物,使Vir区基因活化,导致T-DNA的加工和转移,从而侵染植物细胞。

需要注意的是农杆菌中不同的菌株,侵染能力有差别,在基因工程中需要加以选择使用。

利用农杆菌侵染单子叶植物进行遗传转化时,是需要加上述酚类物质的,同时单子叶植物种类不同,农杆菌侵染进行遗传转化的效果也有很大差异。

如果想将一个抗病毒基因转入小麦,也可以用农杆菌,但要注意两点:

①要选择合适的农杆菌菌株,因为不是所有的农杆菌菌株都可以侵染单子叶植物;

②要加趋化和诱导的物质,一般为乙酰丁香酮等,目的是使农杆菌向植物组织的受伤部位靠拢(趋化性)和激活农杆菌的Vir区(诱导)的基因,使T-DNA转移并插入到染色体DNA上。

3.利用大肠杆菌可以生产出人的胰岛素,联系前面有关细胞器功能的知识,结合基因工程操作程序的基本思路,思考一下,若要生产人的糖蛋白,可以用大肠杆菌吗?

有些蛋白质肽链上有共价结合的糖链,这些糖链是在内质网和高尔基复合体上加工完成的,内质网和高尔基复合体存在于真核细胞中,大肠杆菌不存在这两种细胞器,因此,在大肠杆菌中生产这种糖蛋白是不可能的。

4.β-珠蛋白是动物血红蛋白的重要组成成分。

当它的成分异常时,动物有可能患某种疾病,如镰刀形细胞贫血症。

假如让你用基因工程的方法,使大肠杆菌生产出鼠的β-珠蛋白,想一想,应如何进行设计?

基本操作如下:

(1)从小鼠中克隆出β-珠蛋白基因的编码序列(cDNA)。

(2)将cDNA前接上在大肠杆菌中可以适用的启动子,另外加上抗四环素的基因,构建成一个表达载体。

(3)将表达载体导入无四环素抗性的大肠杆菌中,然后在含有四环素的培养基上培养大肠杆菌。

如果表达载体未进入大肠杆菌中,大肠杆菌会因不含有抗四环素基因而死掉;

如果培养基上长出大肠杆菌菌落,则表明β-珠蛋白基因已进入其中。

(4)培养进入了β-珠蛋白基因的大肠杆菌,收集菌体,破碎后从中提取β-珠蛋白。

(二)求异思维

你能推测出由mRNA反转录形成cDNA的过程大致分为哪些步骤吗?

1970年,特明(H.M.Temin)和巴尔的摩(D.Baltimore)证实了RNA病毒中含有一种能将RNA转录成DNA的酶,这种酶被称为依赖RNA的DNA聚合酶,由于与中心法则中的从DNA到RNA的转录是反向的,所以称为反转录酶(reversetranscriptase)。

反转录酶既可以利用DNA又可以利用RNA作为模板合成与之互补的DNA链。

像其他DNA聚合酶一样,反转录酶也以5′→3′方向合成DNA(图1-3)。

图1-3由mRNA反转录形成cDNA的过程

cDNA合成过程是:

第一步,反转录酶以RNA为模板合成一条与RNA互补的DNA单链,形成RNA-DNA杂交分子。

第二步,核酸酶H使RNA-DNA杂交分子中的RNA链降解,使之变成单链的DNA。

第三步,以单链DNA为模板,在DNA聚合酶的作用下合成另一条互补的DNA链,形成双链DNA分子。

(三)寻根问底

1.为什么要构建基因文库?

直接从含有目的基因的生物体内提取不行吗?

构建基因文库是获取目的基因的方法之一,并不是惟一的方式。

如果所需要的目的基因序列已知,就可以通过PCR方式从含有该基因的生物的DNA中,直接获得,也可以通过反转录,用PCR方式从mRNA中获得,不一定要构建基因文库。

但如果所需要的目的基因的序列完全不知,或只知道目的基因序列的一段,或想从一种生物体内获得许多基因,或者想知道这种生物与另一种生物之间有多少基因不同,或者想知道一种生物在个体发育的不同阶段表达的基因有什么不同,或者想得到一种生物的全基因组序列,往往就需要构建基因文库。

2.将目的基因直接导入受体细胞不是更简便吗?

如果这么做,结果会怎样?

有人采用总DNA注射法进行遗传转化,即将一个生物中的总DNA提取出来,通过注射或花粉管通道法导入受体植物,没有进行表达载体的构建,这种方法针对性差,完全靠运气,也无法确定什么基因导入了受体植物。

此法目前争议颇多,严格来讲不算基因工程。

♫1.3基因工程的应用

思考与探究

根据所学内容,试概括写出基因工程解决了哪些生活、生产中难以解决的问题。

基因工程可以生产人类需要的药物,如胰岛素、干扰素等。

我们吃的某些食品如番茄、大豆等也可以是基因工程产品。

农业生产中的抗虫棉、抗病毒烟草、抗除草剂大豆等都已进入商品化生产,上述产品有些是常规方法难以生产的或者生产成本过高。

♫1.4蛋白质工程的崛起

1.蛋白质工程是应怎样的需求而崛起的?

提示(供教师在教学中参考):

蛋白质工程的崛起主要是工业生产和基础理论研究的需要。

而结构生物学对大量蛋白质分子的精确立体结构及

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 信息与通信

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1