材料科学基础武汉理工大学张联盟版课后习题及答案 第二章汇编Word格式.docx

上传人:b****1 文档编号:14680829 上传时间:2022-10-23 格式:DOCX 页数:12 大小:83.63KB
下载 相关 举报
材料科学基础武汉理工大学张联盟版课后习题及答案 第二章汇编Word格式.docx_第1页
第1页 / 共12页
材料科学基础武汉理工大学张联盟版课后习题及答案 第二章汇编Word格式.docx_第2页
第2页 / 共12页
材料科学基础武汉理工大学张联盟版课后习题及答案 第二章汇编Word格式.docx_第3页
第3页 / 共12页
材料科学基础武汉理工大学张联盟版课后习题及答案 第二章汇编Word格式.docx_第4页
第4页 / 共12页
材料科学基础武汉理工大学张联盟版课后习题及答案 第二章汇编Word格式.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

材料科学基础武汉理工大学张联盟版课后习题及答案 第二章汇编Word格式.docx

《材料科学基础武汉理工大学张联盟版课后习题及答案 第二章汇编Word格式.docx》由会员分享,可在线阅读,更多相关《材料科学基础武汉理工大学张联盟版课后习题及答案 第二章汇编Word格式.docx(12页珍藏版)》请在冰豆网上搜索。

材料科学基础武汉理工大学张联盟版课后习题及答案 第二章汇编Word格式.docx

对称轴、对称中心、晶系、点阵。

定量:

晶胞参数。

2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?

其特点是什么?

晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。

离子键的特点是没有方向性和饱和性,结合力很大。

共价键的特点是具有方向性和饱和性,结合力也很大。

金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。

范德华键是通过分子力而产生的键合,分子力很弱。

氢键是两个电负性较大的原子相结合形成的键,具有饱和性。

2-6等径球最紧密堆积的空隙有哪两种?

一个球的周围有多少个四面体空隙、多少个八面体空隙?

等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。

2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?

不等径球是如何进行堆积的?

n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。

不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。

2-8写出面心立方格子的单位平行六面体上所有结点的坐标。

面心立方格子的单位平行六面体上所有结点为:

(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)

(1)

(1)

(1)。

2-9计算面心立方、密排六方晶胞中的原子数、配位数、堆积系数。

面心:

原子数4,配位数6,堆积密度

六方:

原子数6,配位数6,堆积密度

2-10根据最紧密堆积原理,空间利用率越高,结构越稳定,金刚石结构的空间利用率很低(只有34.01%),为什么它也很稳定?

最紧密堆积原理是建立在质点的电子云分布呈球形对称以及无方向性的基础上的,故只适用于典型的离子晶体和金属晶体,而不能用最密堆积原理来衡量原子晶体的稳定性。

另外,金刚石的单键个数为4,即每个原子周围有4个单键(或原子),由四面体以共顶方式共价结合形成三维空间结构,所以,虽然金刚石结构的空间利用率很低(只有34.01%),但是它也很稳定。

2-11证明等径圆球六方最密堆积的空隙率为25.9%。

设球半径为a,则球的体积为,球的z=4,则球的总体积(晶胞),立方体晶胞体积:

(2a)3=16a3,空间利用率=球所占体积/空间体积=74.1%,空隙率=1-74.1%=25.9%。

2-12金属镁原子作六方密堆积,测得它的密度为1.74g/cm3,求它的晶胞体积。

设晶胞的体积为V,相对原子质量为M,则晶胞体积nm3

2-13根据半径比关系,说明下列离子与O2—配位时的配位数各是多少?

已知rO2-=0.132nm,rSi4+=0.039nm,rK+=0.131nm,rAl3+=0.057nm,rMg2+=0.078nm。

对于Si4+、K+、Al3+、Mg2+来说,其依次是0.295、0.99、0.43、0.59;

依据正离子配位数与正负离子半径比的关系知配位数为:

Si4+4;

K+8;

Al3+6;

Mg2+6。

2-14为什么石英不同系列变体之间的转化温度比同系列变体之间的转化温度高得多?

石英同一系列之间的转变是位移性转变,不涉及晶体结构中键的破裂和重建,仅是键长、键角的调整、需要能量较低,且转变迅速可逆;

而不同系列之间的转变属于重建性转变,都涉及到旧键的破裂和新键的重建,因而需要较的能量,且转变速度缓慢;

所以石英不同系列之间的转化温度比同系列变体之间转化的温度要高的多。

2-15有效离子半径可通过晶体结构测定算出。

在下面NaCl型结构晶体中,测得MgS和MnS的晶胞参数均为a=0.520nm(在这两种结构中,阴离子是相互接触的)。

若CaS(a=0.567nm)、CaO(a=0.480nm)和MgO(a=0.420nm)为一般阳离子-阴离子接触,试求这些晶体中各离子的半径。

MgS中a=0.502nm,阴离子相互接触,a=2r-,∴rS2-=0.177nm;

CaS中a=0.567nm,阴-阳离子相互接触,a=2(r++r-),∴rCa2+=0.107nm;

CaO中a=0.408nm,a=2(r++r-),∴rO2-=0.097nm;

MgO中a=0.420nm,a=2(r++r-),∴rMg2+=0.113nm。

2-16氟化锂(LiF)为NaCl型结构,测得其密度为2.6g/cm3,根据此数据计算晶胞参数,并将此值与你从离子半径计算得到数值进行比较。

设晶胞的体积为V,相对原子质量为M,对于NaCl型结构来说,其n=4,

则晶胞体积nm3

则晶胞参数:

根据离子半径计算:

a=2(r++r-)=4.14nm∴<

a

2-17Li2O的结构是O2-作面心立方堆积,Li+占据所有四面体空隙位置,氧离子半径为0.132nm。

求:

(1)计算负离子彼此接触时,四面体空隙所能容纳的最大阳离子半径,并与书末附表Li+半径比较,说明此时O2-能否互相接触;

(2)根据离子半径数据求晶胞参数;

(3)求Li2O的密度。

解:

根据上图GO=FO=rmax,AB=BC=AC=AD=BD=CD=2

由几何关系知:

=0.054nm

比Li+的离子半径rLi+=0.078nm小,所以此时O2-不能互相接触。

晶胞参数=0.373nm

Li2O的密度g/cm3

2-18MgO和CaO同属NaCl型结构,而它们与水作用时则CaO要比MgO活泼,试解释之。

因为rMg2+与rCa2+不同,rCa2+>

rMg2+,使CaO结构较MgO疏松,H2O易于进入,所以活泼。

2-19CaF2的晶胞参数为0.547nm。

(1)根据CaF2晶胞立体图画出CaF2晶胞在(001)面上的投影图;

(2)画出CaF2(110)面上的离子排列简图;

(3)正负离子半径之和为多少?

(1)

CaF2晶胞在(001)面上的投影图

(2)

CaF2(110)面上的离子排列简图

(3)正负离子半径之和

2-20计算CdI2晶体中的I-及CaTiO3晶体中O2-的电价是否饱和?

CdI2晶体中Cd2+的配位数CN=6,I-与三个在同一边的Cd2+相连,且I-的配位数CN=3

所以,即I-电价饱和

CaTiO3晶体中,Ca2+的配位数CN=12,Ti4+的配位数CN=6,O2-的配位数CN=6

所以,即O2-电价饱和。

2-21

(1)画出O2-作面心立方堆积时,各四面体空隙和八面体空隙的所在位置(以一个晶胞为结构基元表示出来);

(2)计算四面体空隙数、八而休空隙数与O2-数之比

(1)略

(2)四面体空隙数与O2-数之比为2:

1,八面体空隙数与O2-数之比为1:

1

2-22根据电价规则,在下面情况下,空隙内各需填入何种价数的阳离子,并对每一种结构举出—个例子。

(1)所有四面体空隙位置均填满;

(2)所有八面体空隙位置均填满;

(3)填满—半四面体空隙位置;

(4)填满—半八面体空隙位置。

分别为

(1)阴阳离子价态比应为1:

2如CaF2

(2)阴阳离子价态比应为1:

1如NaCl

(3)阴阳离子价态比应为1:

1如ZnS(4)阴阳离子价态比应为1:

2如TiO2

2-23化学手册中给出NH4Cl的密度为1.5g/cm3,X射线数据说明NH4Cl有两种晶体结构,一种为NaCl型结构,a=0.726nm;

另一种为CsCl结构,a=0.387nm。

上述密度值是哪一种晶型的?

(NH4+离子作为一个单元占据晶体点阵)。

若NH4Cl为NaCl结构

则可由公式可得:

=0.912g/cm3

若NH4Cl为NaCl结构,

=1.505

由计算可知NaCl型结构的NH4Cl与化学手册中给出NH4Cl的密度接近,所以该密度

NaCl晶型

2-24MnS有三种多晶体,其中两种为NaCl型结构,一种为立方ZnS型结构,当有立方型ZnS结构转变为NaCl型结构时,体积变化的百分数是多少?

已知CN=6时,rMn2+=0.08nm,rS2-=0.184nm;

CN=4时,rMn2+=0.073nm,rS2-=0.167nm。

当为立方ZnS型结构时:

=0.472nm

当为NaCl型结构时:

=2(rMn2++rS2-)=2(0.08+0.184)=0.384nm

所以体积变化:

=46.15%

2-25钛酸钡是一种重要的铁电陶瓷,其晶型是钙钛矿结构,试问:

(1)属于什么点阵?

(2)这个结构中离子的配位数为若干?

(3)这个结构遵守鲍林规则吗?

请作充分讨论。

(1)属于立方晶系

(2)Ba2+、Ti4+和O2-的配位数分别为12、6和6

(3)这个结构遵守鲍林规则

鲍林第一规则——配位多面体规则

对于Ti4+配位数为6

对于Ba2+配位数为12

符合鲍林第一规则

鲍林第二规则——电价规则

即负离子电荷Z-=则O2-离子电荷=与O2-离子电荷相等,

故符合鲍林第二规则,又根据钙钛矿型结构知其配位多面体不存在共棱或共面的情况,结构情况也符合鲍林第四规则——不同配位体连接方式规则和鲍林第五规则——节约规则

所以钙钛矿结构遵守鲍林规则。

2-26硅酸盐晶体结构有何特点?

怎样表征其学式?

硅酸盐晶体结构非常复杂,但不同的结构之间具有下面的共同特点:

(1)结构中的Si4+离子位于O2-离子形成的四面体中心,构成硅酸盐晶体的基本结构单元[SiO4]四面体。

Si-O-Si是一条夹角不等的折线,一般在145°

左右。

(2)[SiO4]四面体的每个顶点,即O2-离子最多只能为两个[SiO4]四面体所共用。

(3)两个相邻的[SiO4]四面体之间只能共顶而不能共棱或共面连接。

(4)[SiO4]四面体中心的Si4+离子可以部分地被Al3+离子所取代,取代后结构本身不发生太大变化,即所谓的同晶取代,但晶体的性质发生了很大的变化。

这为材料的改性提供了可能。

硅酸盐的化学式表征方法主要有以下两种:

(1)氧化物表示法

将构成硅酸盐晶体的所有氧化物按一定的比例和顺序全部写出来,先是1价的碱金属氧化物,其次是2价、3价的金属氧化物,最后是SiO2

(2)无机络合盐表示法

构成硅酸盐晶体的所有离子按一定的比例和顺序全部写出来,再把相关的络阴离子用中括号括起来即可。

先是1价、2价的金属离子,其次是Al3+离子和Si4+离子,最后是O2-离子和OH-离子。

氧化物表示法的优点在于一目了然的反应出晶体的化学组成,可以按此配料来进行晶体的实验室合成。

用无机络合盐法则可以比较直观的反应出晶体所属的结构类型,进而可以对晶体结构及性质作出一定程度的预测。

两种表示方法之间可以相互转换。

2-27硅酸盐晶体的分类依据是什么?

可分为那几类,每类的结构特点是什么?

硅酸盐晶体主要是根据[SiO4]在结构中的排列结合方式来分类,具体可以分为五类:

岛状、组群状、链状、层状和架状。

结构和组成上的特征见下表:

结构类型

[SiO4]共用O2-数

形状

络阴离子团

Si:

O

I岛状

四面

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 生物学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1