江苏省泰州市届高三第一次模拟考试 数学Word文档下载推荐.docx

上传人:b****1 文档编号:14675832 上传时间:2022-10-23 格式:DOCX 页数:13 大小:234.52KB
下载 相关 举报
江苏省泰州市届高三第一次模拟考试 数学Word文档下载推荐.docx_第1页
第1页 / 共13页
江苏省泰州市届高三第一次模拟考试 数学Word文档下载推荐.docx_第2页
第2页 / 共13页
江苏省泰州市届高三第一次模拟考试 数学Word文档下载推荐.docx_第3页
第3页 / 共13页
江苏省泰州市届高三第一次模拟考试 数学Word文档下载推荐.docx_第4页
第4页 / 共13页
江苏省泰州市届高三第一次模拟考试 数学Word文档下载推荐.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

江苏省泰州市届高三第一次模拟考试 数学Word文档下载推荐.docx

《江苏省泰州市届高三第一次模拟考试 数学Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《江苏省泰州市届高三第一次模拟考试 数学Word文档下载推荐.docx(13页珍藏版)》请在冰豆网上搜索。

江苏省泰州市届高三第一次模拟考试 数学Word文档下载推荐.docx

11.在平面直角坐标系xOy中,过圆C1:

(x-k)2+(y+k-4)2=1上任一点P作圆C2:

x2+y2=1的一条切线,切点为Q,则当线段PQ的长最小时,k=________.

12.已知P为平行四边形ABCD所在平面上任一点,且满足++2=0,λ+μ+=0,则λμ=________.

13.已知函数f(x)=若存在x0<0,使得f(x0)=0,则实数a的取值范围是________.

14.在△ABC中,已知sinAsinBsin(C-θ)=λsin2C,其中tanθ=,若++为定值,则实数λ=________.

二、解答题:

本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤.

15.(本小题满分14分)

已知向量a=(sinx,1),b=,其中x∈(0,π).

(1)若a∥b,求x的值;

(2)若tanx=-2,求|a+b|的值.

 

16.(本小题满分14分)

如图,在四棱锥PABCD中,底面ABCD为平行四边形,O为对角线BD的中点,E,F分别为棱PC,PD的中点,已知PA⊥AB,PA⊥AD.求证:

(1)直线PB∥平面OEF;

(2)平面OEF⊥平面ABCD.

17.(本小题满分14分)

如图,三个小区分别位于扇形OAB的三个顶点上,Q是弧AB的中点,现欲在线段OQ上找一处开挖工作坑P(不与点O,Q重合),为小区铺设三条地下电缆管线PO,PA,PB,已知OA=2千米,∠AOB=,记∠APQ=θrad,地下电缆管线的总长度为y千米.

(1)将y表示成θ的函数,并写出θ的范围;

(2)请确定工作坑P的位置,使地下电缆管线的总长度最小.

18.(本小题满分16分)

如图,在平面直角坐标系xOy中,椭圆C:

+=1(a>

b>

0)的左顶点为A,B是椭圆C上异于左、右顶点的任意一点,P是AB的中点,过点B且与AB垂直的直线与直线OP交于点Q,已知椭圆C的离心率为,点A到右准线的距离为6.

(1)求椭圆C的标准方程;

(2)设点Q的横坐标为x0,求x0的取值范围.

19.(本小题满分16分)

设A,B为函数y=f(x)图象上相异两点,且点A,B的横坐标互为倒数,过点A,B分别作函数y=f(x)的切线,若这两条切线存在交点,则称这个交点为函数f(x)的“优点”.

(1)若函数f(x)=不存在“优点”,求实数a的值;

(2)求函数f(x)=x2的“优点”的横坐标的取值范围;

(3)求证:

函数f(x)=lnx的“优点”一定落在第一象限.

20.(本小题满分16分)

已知首项不为0的数列{an}的前n项和为Sn,2a1+a2=a3,且对任意的n∈N,n≥2都有2nSn+1-(2n+5)Sn+Sn-1=ra1.

(1)若a2=3a1,求r的值;

(2)数列{an}能否是等比数列?

说明理由;

(3)当r=1时,求证:

数列{an}是等差数列.

数学附加题

(本部分满分40分,考试时间30分钟)

21.【选做题】本题包括A、B、C三小题,请选定其中两小题,并作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.

A.[选修42:

矩阵与变换](本小题满分10分)

B.[选修44:

坐标系与参数方程](本小题满分10分)

在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数).若直线l与曲线C相交于A,B两点,求线段AB的长.

C.[选修45:

不等式选讲](本小题满分10分)

设正数a,b,c满足3a+2b+c=1,求++的最小值.

【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.

22.(本小题满分10分)

如图,在正四棱柱ABCDA1B1C1D1中,AA1=3,AB=1.

(1)求异面直线A1B与AC1所成角的余弦值;

(2)求平面A1BC与平面AC1D所成二面角的正弦值.

23.(本小题满分10分)

已知函数f(x)=1-|2x-1|,0≤x≤1,设fn(x)=fn-1(f1(x)),其中f1(x)=f(x),方程

fn(x)=0和方程fn(x)=1根的个数分别为gn(0),gn

(1).

(1)求g2

(1)的值;

(2)证明:

gn(0)=gn

(1)+1.

2019届高三年级第一次模拟考试(七)(泰州)

数学参考答案

1.π 2.±

4 3.5 4.[-1,1] 5. 6.8

7.4 8. 9. 10.(-1,+∞) 11.2

12.- 13.[-1,0) 14.

15.

(1)因为a∥b,

所以sinxcosx=,即sin2x=1.

因为x∈(0,π),所以x=.

(2)因为tanx==-2,

所以sinx=-2cosx.

因为a+b=,

所以|a+b|===.

16.

(1)O为BD的中点,F为PD的中点,

所以PB∥FO.

因为PB⊄平面OEF,FO⊂平面OEF,

所以PB∥平面OEF.

(2)连结AC,因为四边形ABCD为平行四边形,

所以AC与BD交于点O,O为AC的中点.

因为E为PC的中点,

所以PA∥OE.

因为PA⊥AB,PA⊥AD,AB∩AD=A,AB,AD⊂平面ABCD,

所以PA⊥平面ABCD,

所以OE⊥平面ABCD.

因为OE⊂平面OEF,

所以平面OEF⊥平面ABCD.

17.

(1)因为Q为弧AB的中点,由对称性,知PA=PB,∠AOP=∠BOP=,

又∠APO=π-θ,∠OAP=θ-,

由正弦定理,得==,又OA=2,

所以PA=,OP=,

所以y=PA+PB+OP=2PA+OP==,

因为∠APQ>∠AOP,

所以θ>

,∠OAQ=∠OQA=(π-)=,

所以θ∈.

(2)令f(θ)=,θ∈,

f′(θ)==0,得θ=,

f(θ)在区间上单调递减,在区间(,)上单调递增,

所以当θ=,即OP=千米时,f(θ)有唯一的极小值,即是最小值,则f(θ)min=2.

答:

当工作坑P与O的距离为千米时,地下电缆管线的总长度最小.

18.

(1)依题意,得解得

所以b==,

所以椭圆C的方程为+=1.

(2)由

(1)知,A(-2,0),设AB:

x=my-2,m≠0,

联立

解得或

即B(,),则P(,),

所以kOP=-,OP:

y=-x.

因为AB⊥BQ,所以kBQ=-m,所以直线BQ的方程为BQ:

y=-mx+,

联立得x0==8-∈(4,8).

19.

(1)由题意可知,f′(x)=f′对x∈(0,1)∪(1,+∞)恒成立,

不妨取x∈(0,1),则f′(x)===f′恒成立,即a=,

经验证,a=符合题意.

(2)设A(t,t2),B(t≠0且t≠±

1),

因为f′(x)=2x,

所以A,B两点处的切线方程分别为y=2tx-t2,y=x-,

令2tx-t2=x-,解得x=∈(-∞,-1)∪(1,+∞),

所以“优点”的横坐标取值范围为(-∞,-1)∪(1,+∞).

(3)设A(t,lnt),b,t∈(0,1),

因为f′(x)=,

所以A,B两点处的切线方程分别为y=x+lnt-1,y=tx-lnt-1,

令x+lnt-1=tx-lnt-1,

解得x=>

0,

所以y=·

+lnt-1=(lnt-),

设h(m)=lnm-,m∈(0,1),

则h′(m)=>

所以h(m)单调递增,

所以h(m)<

h

(1)=0,

即lnt-<

0.

因为<

+lnt-1>

所以“优点”的横坐标和纵坐标均为正数,在第一象限.

20.

(1)令n=2,得4S3-9S2+S1=ra1,

即4(a3+a2+a1)-9(a2+a1)+a1=ra1,

化简,得4a3-5a2-4a1=ra1.

因为2a1+a2=a3,a2=3a1,

所以4×

5a1-5×

3a1-4a1=ra1,

解得r=1.

(2)假设数列{an}是等比数列,公比为q,则由2a1+a2=a3得2a1+a1q=a1q2,且a1≠0,解得q=2或q=-1,

由2nSn+1-(2n+5)Sn+Sn-1=ra1,

得4Sn=2nan+1-an-ra1(n≥2),

所以4Sn-1=2(n-1)an-an-1-ra1(n≥3),两式相减,整理得2nan+1+an-1=(2n+3)an,

两边同除以an-1,可得2n(q2-q)=3q-1.

因为q=2或-1,

所以q2-q≠0,

所以上式不可能对任意n≥3恒成立,

故数列{an}不可能是等比数列.

(3)r=1时,令n=2,

整理得-4a1-5a2+4a3=a1,

又由2a1+a2=a3可知a2=3a1,a3=5a1,

令n=3,可得6S4-11S3+S2=a1,

解得a4=7a1,

(2)可知4Sn=2nan+1-an-a1(n≥2),

所以4Sn-1=2(n-1)an-an-1-a1(n≥3),

两式相减,整理得2nan+1+an-1=(2n+3)an(n≥3),

所以2(n-1)an+an-2=(2n+1)an-1(n≥4),

两式相减,可得2n[(an+1-an)-(an-an-1)]=(an-an-1)-(an-1-an-2)(n≥4).

因为(a4-a3)-(a3-a2)=0,

所以(an-an-1)-(an-1-an-2)=0(n≥4),

即an-an-1=an-1-an-2(n≥4),

又因为a3-a2=a2-a1=2a1,

所以数列{an}是以a1为首项,2a1为公差的等差数列.

21.A.将λ=-2代入=λ2-(x-1)λ-(x+5)=0,得x=3,

B.由题意得曲线C的直角坐标方程为(x+1)2+y2=4.

将直线l的参数方程代入(x+1)2+y2=4得

+=4,

即4t2-4t-3=0,

解得t1=-,t2=,

则AB=|t1-t2|==2.

C.因为3a+2b+c=1,

所以++

=(2a+a+b+b+c)·

≥(×

+×

)2

=(+1+1)2

=6+4,

当且仅当==时,等号成立,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1