模式3九年级下册数学教案93页 1Word文档格式.docx
《模式3九年级下册数学教案93页 1Word文档格式.docx》由会员分享,可在线阅读,更多相关《模式3九年级下册数学教案93页 1Word文档格式.docx(141页珍藏版)》请在冰豆网上搜索。
注重学生参与,联系实际,丰富学生的感性认识
情 感
态 度
价值观
培养学生的良好的学习习惯
教学重点
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学难点
教学准备
教师
多媒体课件
学生
“五个一”
课堂教学程序设计
设计意图
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
AB长x(m)
1
2
3
4
5
6
7
8
9
BC长(m)
12
面积y(m2)
48
2.x的值是否可以任意取?
有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:
(1)从所填表格中,你能发现什么?
(2)对前面提出的问题的解答能作出什么猜想?
让学生思考、交流、发表意见,达成共识:
当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;
最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。
形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。
对于3,教师可提出问题,
(1)当AB=xm时,BC长等于多少m?
(2)面积y等于多少?
并指出y=x(20-2x)(0<x<10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。
将这种商品的售价降低多少时,能使销售利润最大?
在这个问题中,可提出如下问题供学生思考并回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×
销售量]
2.如果不降低售价,该商品每件利润是多少元?
一天总的利润是多少元?
[10-8=2(元),(10-8)×
100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?
一天可销售约多少件商品?
[(10-8-x);
(100+100x)]
4.x的值是否可以任意取?
如果不能任意取,请求出它的范围,
[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x)(100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0<x<10=化为:
y=-2x2+20x(0<x<10)……………………………
(1)
将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:
y=-100x2+100x+20D(0≤x≤2)……………………
(2)
三、观察;
概括
1.教师引导学生观察函数关系式
(1)和
(2),提出以下问题让学生思考回答;
(1)函数关系式
(1)和
(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?
(分别是二次多项式)
(3)函数关系式
(1)和
(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点?
让学生讨论、交流,发表意见,归结为:
自变量x为何值时,函数y取得最大值。
2.二次函数定义:
形如y=ax2+bx+c(a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
作业
设计
必做
教科书P14:
1、2
选做
教学
反思
26.1 二次函数
(2)
使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
使学生经历、探索二次函数y=ax2图象性质的过程
培养学生观察、思考、归纳的良好思维习惯
使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
一、提出问题
1,同学们可以回想一下,一次函数的性质是如何研究的?
(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)
2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?
如果可以,应先研究什么?
(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)
3.一次函数的图象是什么?
二次函数的图象是什么?
二、范例
例1、画二次函数y=x2的图象。
解:
(1)列表:
在x的取值范围内列出函数对应值表:
x
…
-3
-2
-1
y
(2)在直角坐标系中描点:
用表里各组对应值作为点的坐标,在平面直角坐标系中描点
(3)连线:
用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:
观察这个函数的图象,它有什么特点?
让学生观察,思考、讨论、交流,归结为:
它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:
像这样的曲线通常叫做抛物线。
顶点概念:
抛物线与它的对称轴的交点叫做抛物线的顶点.
三、做一做
1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?
又有什么区别?
2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?
3.将所画的四个函数的图象作比较,你又能发现什么?
在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。
两个函数图象的共同点以及它们的区别,可分组讨论。
交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。
四、归纳、概括
函数y=x2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数y=x2、y=-x2、y=2x2、y=-2x2的图象的共同特点,可猜想:
函数y=ax2的图象是一条________,它关于______对称,它的顶点坐标是______。
如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?
为什么?
让学生观察y=x2、y=2x2的图象,填空;
当a>
0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;
在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
图象的这些特点反映了函数的什么性质?
先让学生观察下图,回答以下问题;
(1)XA、XB大小关系如何?
是否都小于0?
(2)yA、yB大小关系如何?
(3)XC、XD大小关系如何?
是否都大于0?
(4)yC、yD大小关系如何?
(XA<
XB,且XA<
0,XB<
0;
yA>
yB;
XC<
XD,且XC>
0,XD>
0,yC<
yD)
其次,让学生填空。
当X<
0时,函数值y随着x的增大而______,当X>
O时,函数值y随X的增大而______;
当X=______时,函数值y=ax2(a>
0)取得最小值,最小值y=______
以上结论就是当a>
0时,函数y=ax2的性质。
思考以下问题:
观察函数y=-x2、y=-2x2的图象,试作出类似的概括,当a<
O时,抛物线y=ax2有些什么特点?
它反映了当a<
O时,函数y=ax2具有哪些性质?
让学生讨论、交流,达成共识,当a<
O时,抛物线y=ax2开口向上,在对称轴的左边,曲线自左向右上升;
在对称轴的右边,曲线自左向右下降,顶点抛物线上位置最高的点。
图象的这些特点,反映了当a<
O时,函数y=ax2的性质;
当x<
0时,函数值y随x的增大而增大;
与x>
O时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0。
3、4
26.1二次函数(3)
使学生能利用描点法正确作出函数y=ax2+b的图象。
让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
师生互动,学生动手操作,体验成功的喜悦
会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系
正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系
1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;
对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。
2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?
二、分析问题,解决问题
问题1:
对于前面提出的第2个问题,你将采取什么方法加以研究?
(画出函数y=2x2和函数y=2x2的图象,并加以比较)
问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?
教学要点
1.先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y=2x2的图象。
2.教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y=2x2+1的对应值表,并让学生画出函数y=2x2+1的图象.
3.教师写出解题过程,同学生所画图象进行比较。
解:
y=x2
18