中考数学总复习动点问题练习含答案Word下载.doc

上传人:b****2 文档编号:14640004 上传时间:2022-10-23 格式:DOC 页数:4 大小:427KB
下载 相关 举报
中考数学总复习动点问题练习含答案Word下载.doc_第1页
第1页 / 共4页
中考数学总复习动点问题练习含答案Word下载.doc_第2页
第2页 / 共4页
中考数学总复习动点问题练习含答案Word下载.doc_第3页
第3页 / 共4页
中考数学总复习动点问题练习含答案Word下载.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

中考数学总复习动点问题练习含答案Word下载.doc

《中考数学总复习动点问题练习含答案Word下载.doc》由会员分享,可在线阅读,更多相关《中考数学总复习动点问题练习含答案Word下载.doc(4页珍藏版)》请在冰豆网上搜索。

中考数学总复习动点问题练习含答案Word下载.doc

由∠PDQ=90°

,∠MDN=90°

,可得∠PDM=∠QDN.

因此△PDM∽△QDN.

所以.所以,.

图2图3图4

①如图3,当BP=2,P在BM上时,PM=1.

此时.所以.

②如图4,当BP=2,P在MB的延长线上时,PM=5.

(3)如图5,如图2,在Rt△PDQ中,.

在Rt△ABC中,.所以∠QPD=∠C.

,∠CDE=90°

,可得∠PDF=∠CDQ.

因此△PDF∽△CDQ.

当△PDF是等腰三角形时,△CDQ也是等腰三角形.

①如图5,当CQ=CD=5时,QN=CQ-CN=5-4=1(如图3所示).

②如图6,当QC=QD时,由,可得.

所以QN=CN-CQ=(如图2所示).

③不存在DP=DF的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图5,图6所示).

图5图6

2.如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;

若不存在,请说明理由.

图1

(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3),

代入点C(0,3),得-3a=3.解得a=-1.

所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.

(2)如图2,抛物线的对称轴是直线x=1.

当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.

设抛物线的对称轴与x轴的交点为H.

由,BO=CO,得PH=BH=2.

所以点P的坐标为(1,2).

图2

(3)点M的坐标为(1,1)、(1,)、(1,)或(1,0).

3.如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°

至OB的位置.

(1)求点B的坐标;

(2)求经过A、O、B的抛物线的解析式;

(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?

若存在,求点P的坐标;

(1)如图2,过点B作BC⊥y轴,垂足为C.

在Rt△OBC中,∠BOC=30°

,OB=4,所以BC=2,.

所以点B的坐标为.

(2)因为抛物线与x轴交于O、A(4,0),设抛物线的解析式为y=ax(x-4),

代入点B,.解得.

所以抛物线的解析式为.

(3)抛物线的对称轴是直线x=2,设点P的坐标为(2,y).

①当OP=OB=4时,OP2=16.所以4+y2=16.解得.

当P在时,B、O、P三点共线(如图2).

②当BP=BO=4时,BP2=16.所以.解得.

③当PB=PO时,PB2=PO2.所以.解得.

综合①、②、③,点P的坐标为,如图2所示.

图2图3

4.如图1,已知一次函数y=-x+7与正比例函数的图象交于点A,且与x轴交于点B.

(1)求点A和点B的坐标;

(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;

同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.

①当t为何值时,以A、P、R为顶点的三角形的面积为8?

②是否存在以A、P、Q为顶点的三角形是等腰三角形?

若存在,求t的值;

图1

(1)解方程组得所以点A的坐标是(3,4).

令,得.所以点B的坐标是(7,0).

(2)①如图2,当P在OC上运动时,0≤t<4.由,得.整理,得.解得t=2或t=6(舍去).如图3,当P在CA上运动时,△APR的最大面积为6.

因此,当t=2时,以A、P、R为顶点的三角形的面积为8.

图2图3图4

②我们先讨论P在OC上运动时的情形,0≤t<4.

如图1,在△AOB中,∠B=45°

,∠AOB>45°

,OB=7,,所以OB>AB.因此∠OAB>∠AOB>∠B.

如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.

因此∠AQP=45°

保持不变,∠PAQ越来越大,所以只存在∠APQ=∠AQP的情况.

此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1.

我们再来讨论P在CA上运动时的情形,4≤t<7.

在△APQ中,为定值,,.

如图5,当AP=AQ时,解方程,得.

如图6,当QP=QA时,点Q在PA的垂直平分线上,AP=2(OR-OP).解方程,得.

如7,当PA=PQ时,那么.因此.解方程,得.

综上所述,t=1或或5或时,△APQ是等腰三角形.

图5图6图7

5.如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.

(1)求y关于x的函数关系式;

(2)若m=8,求x为何值时,y的值最大,最大值是多少?

(3)若,要使△DEF为等腰三角形,m的值应为多少?

(1)因为∠EDC与∠FEB都是∠DEC的余角,所以∠EDC=∠FEB.又因为∠C=∠B=90°

,所以△DCE∽△EBF.因此,即.整理,得y关于x的函数关系为.

(2)如图2,当m=8时,.因此当x=4时,y取得最大值为2.

(3)若,那么.整理,得.解得x=2或x=6.要使△DEF为等腰三角形,只存在ED=EF的情况.因为△DCE∽△EBF,所以CE=BF,即x=y.将x=y=2代入,得m=6(如图3);

将x=y=6代入,得m=2(如图4).

图2图3图4

6.如图1,在等腰梯形ABCD中,AD//BC,E是AB的中点,过点E作EF//BC交CD于点F,AB=4,BC=6,∠B=60°

(1)求点E到BC的距离;

(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于M,过M作MN//AB交折线ADC于N,连结PN,设EP=x.

①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?

若不变,求出△PMN的周长;

若改变,请说明理由;

②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?

若存在,请求出所有满足条件的x的值;

图1图2图3

(1)如图4,过点E作EG⊥BC于G.

在Rt△BEG中,,∠B=60°

所以,.

所以点E到BC的距离为.

(2)因为AD//EF//BC,E是AB的中点,所以F是DC的中点.

因此EF是梯形ABCD的中位线,EF=4.

①如图4,当点N在线段AD上时,△PMN的形状不是否发生改变.

过点N作NH⊥EF于H,设PH与NM交于点Q.

在矩形EGMP中,EP=GM=x,PM=EG=.

在平行四边形BMQE中,BM=EQ=1+x.

所以BG=PQ=1.

因为PM与NH平行且相等,所以PH与NM互相平分,PH=2PQ=2.

在Rt△PNH中,NH=,PH=2,所以PN=.

在平行四边形ABMN中,MN=AB=4.

因此△PMN的周长为++4.

图4图5

②当点N在线段DC上时,△CMN恒为等边三角形.

如图5,当PM=PN时,△PMC与△PNC关于直线PC对称,点P在∠DCB的平分线上.

在Rt△PCM中,PM=,∠PCM=30°

,所以MC=3.

此时M、P分别为BC、EF的中点,x=2.

如图6,当MP=MN时,MP=MN=MC=,x=GM=GC-MC=5-.

如图7,当NP=NM时,∠NMP=∠NPM=30°

,所以∠PNM=120°

又因为∠FNM=120°

,所以P与F重合.

此时x=4.

综上所述,当x=2或4或5-时,△PMN为等腰三角形.

图6图7图8

[键入文字]

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1