二元一次方程组解应用题专题分类常见十三类Word文件下载.docx

上传人:b****2 文档编号:14592209 上传时间:2022-10-23 格式:DOCX 页数:26 大小:63.03KB
下载 相关 举报
二元一次方程组解应用题专题分类常见十三类Word文件下载.docx_第1页
第1页 / 共26页
二元一次方程组解应用题专题分类常见十三类Word文件下载.docx_第2页
第2页 / 共26页
二元一次方程组解应用题专题分类常见十三类Word文件下载.docx_第3页
第3页 / 共26页
二元一次方程组解应用题专题分类常见十三类Word文件下载.docx_第4页
第4页 / 共26页
二元一次方程组解应用题专题分类常见十三类Word文件下载.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

二元一次方程组解应用题专题分类常见十三类Word文件下载.docx

《二元一次方程组解应用题专题分类常见十三类Word文件下载.docx》由会员分享,可在线阅读,更多相关《二元一次方程组解应用题专题分类常见十三类Word文件下载.docx(26页珍藏版)》请在冰豆网上搜索。

二元一次方程组解应用题专题分类常见十三类Word文件下载.docx

(6)增长率问题;

(7)和差倍分问题;

(8)数字问题;

(9)浓度问题;

(10)几何问题;

(11)年龄问题;

(12)优化方案问题.

一、行程问题

(1)三个基本量的关系:

路程s=速度v×

时间t时间t=路程s÷

速度V速度V=路程s÷

时间t

(2)三大类型:

①相遇问题:

快行距+慢行距=原距

②追及问题:

快行距-慢行距=原距

③航行问题:

顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速=2水速;

顺速+逆速=2船速顺水的路程=逆水的路程

相遇问题:

两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。

它的特点是两个运动物体共同走完整个路程。

A车路程

B车路程

A车路程+B车路程=相距路程总路程=(甲速+乙速)×

相遇时间相遇时间=总路程÷

(甲速+乙速)

另一个速度=甲乙速度和-已知的一个速度

甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度.

练习:

学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇?

相遇时二人各行了多少米?

追及问题:

两物体速度不同向同一方向运动,两物体同时运动,一个在前,一个在后,前后相隔的路程若把它叫做“追及的路程”,那么,在后的追上前一个的时间叫“追及时间”.

A车后行路程

B车追击路程

A车先行路程

追击

关系式是:

 

追及的路程÷

速度差=追及时间

顺速–逆速=2水速;

A、B两地相距28千米,甲乙两车同时分别从A、B两地同一方向开出,甲车每小时行32千米,乙车每小时行25千米,乙车在前,甲车在后,几小时后甲车能追上乙车?

甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;

相向而行,1小时相遇。

二人的平均速度各是多少?

解:

设甲每小时走x千米,乙每小时走y千米

题中的两个相等关系:

1、同向而行:

甲的路程=乙的路程+可列方程为:

2、相向而行:

甲的路程+=可列方程为:

【变式】

1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机.这时,汽车、拖拉机各自行驶了多少千米?

2.甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。

根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围?

3.从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,

平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。

甲地到乙地全程是多少?

4.甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.

5.两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.

6.某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.

7.通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;

如果每小时走12千米,则要迟到15分钟。

求通讯员到达某地的路程是多少千米?

和原定的时间为多少小时?

总结升华:

根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

 

一只船在河中航行,水速为每小时2千米,它在静水中航行每小时8千米,顺水航行每小时行多少千米?

逆水航行每小时行多少千米?

顺水航行50千米需要用多少小时?

1.某船在静水中的速度是每小时7千米,水流速度是每小时2千米,那么它逆水中的速度是多少?

若逆水航行3小时,可航行多少千米?

2.某船顺水速度是每小时17千米,逆水航行速度是每小时10千米,那么此船的静水速度是每小时多少千米?

水流速度是每小时行多少千米?

3.两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

  

二、工程问题

三个基本量的关系:

工作总量=工作时间×

工作效率;

工作时间=工作总量÷

工作效率=工作总量÷

工作时间甲的工作量+乙的工作量=甲乙合作的工作总量,

注:

当工作总量未给出具体数量时,常设总工作量为“1”。

一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;

若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:

(1)甲、乙两组工作一天,商店应各付多少元?

(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?

工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;

工程问题也经常利用线段图或列表法进行分析。

【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;

若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?

请你说明理由.

1.现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;

若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件

2.某检测站要在规定时间内检测一批仪器,原计划每天检测30台这种仪器,则在规定时间内只能检测完总数的七分之三;

现在每天实际检测40台,结果不但比原计划提前了一天完成任务,还可以多检测25台.问规定时间是多少天?

这批仪器共多少台?

3.甲、乙两人同时加工一批零件,前3小时两人共加工126件,后5小时甲先花了1小时修理工具,因此甲每小时比以前多加工10件,结果在后一段时间内,甲比乙多加工了10件,甲、乙两人原来每小时各加工多少件?

4.一项工程,甲单独做12天完成,乙队单独要做15天完成,丙队单独要20天完成,按计划要求在7天内完成,现在甲乙先合作若干天,丙队也同时加入这项工作,这样比原定时间提前一天完成任务。

甲乙两队合做了多少天?

丙队做了多少天?

5.甲乙两个车间原计划装车床180台,甲车间完成计划的112%,乙车间完成了计划的110%,这样共装机床200台,两车间各比计划多完成多少台?

6..某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:

销售方式

直接销售

粗加工后销售

精加工后销售

每吨获利(元)

100

250

450

7.现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).

(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:

8.

全部直接销售

全部粗加工后销售

尽量精加工,剩余部分直接销售

获利(元)

(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?

三:

商品销售利润问题

利润问题:

利润=售价—进价,利润率=(售价—进价)÷

进价×

100%

  有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。

价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?

【变式】1.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:

A

B

进价(元/件)

1200

1000

售价(元/件)

1380

求该商场购进A、B两种商品各多少件;

3.一.种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。

3种包装的饮料每瓶各多少元?

捐款

10

15

30

50

人数

18

4

3.我校七年级

(1)班55名同学共捐款830元,捐款情况如右表.表中捐款2元和5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.

4.甲乙两种商品的进价和是100元,为促销而打折出售,若甲商品打8折,乙商品打6折,可赚50元,若甲商品打6折,乙商品打8折可赚19.5元,求甲乙两种商品原定价各是多少元。

5.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?

6.有甲乙两种电饭锅原来的单价之和是200元,现因市场销售情况的变化,甲商品商品降价15%,乙商品单价提高了40%,调价后,两种电饭锅的单价和比原来的单价和提高了12.5%。

甲乙两种商品原来的单价各是多少?

四、银行储蓄问题

银行利率问题:

免税利息=本金×

利率×

时间,

税后利息=本金×

时间—本金×

时间×

税率

4.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 演讲主持

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1