量子力学的发展史及其哲学思想Word文档下载推荐.doc

上传人:b****2 文档编号:14380249 上传时间:2022-10-22 格式:DOC 页数:18 大小:63.50KB
下载 相关 举报
量子力学的发展史及其哲学思想Word文档下载推荐.doc_第1页
第1页 / 共18页
量子力学的发展史及其哲学思想Word文档下载推荐.doc_第2页
第2页 / 共18页
量子力学的发展史及其哲学思想Word文档下载推荐.doc_第3页
第3页 / 共18页
量子力学的发展史及其哲学思想Word文档下载推荐.doc_第4页
第4页 / 共18页
量子力学的发展史及其哲学思想Word文档下载推荐.doc_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

量子力学的发展史及其哲学思想Word文档下载推荐.doc

《量子力学的发展史及其哲学思想Word文档下载推荐.doc》由会员分享,可在线阅读,更多相关《量子力学的发展史及其哲学思想Word文档下载推荐.doc(18页珍藏版)》请在冰豆网上搜索。

量子力学的发展史及其哲学思想Word文档下载推荐.doc

玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。

因此更突出了认识微观粒子运动规律的迫切性。

直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。

量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。

一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;

另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。

虽然本书中不能详细叙述这个过程。

尽管这些新现象在十九世纪末就陆续被发现,而量子力学的诞生却在本世纪二十年代,这中间曾经历一个曲折的途径,说明量子力学这个理论的诞生决不是一帆风顺的更不是靠少数科学家在头脑中凭空想出来的。

爱因斯坦在这次大会上作了题为《论我们关于辐射的本质和组成的观点的发展》的报告,首次提出光具有波粒二象性。

爱因斯坦通过对光辐射的统计提醒的精辟分析得出结论:

光对于统计平均现象表现为波动,而对于能量张罗现象却表现为粒子,因此,光同时具有波动性和粒子性。

爱因斯坦进一步指出,这两者并不是水火不相容的。

这样,爱因斯坦的第一次在更深的层次上及时处理光的神秘本性,从而也将他最尊敬的两位前辈——牛顿和麦克斯韦——关于光的理论有机的综合在一起。

量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。

量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。

量子力学的发展简史

 

量子力学是在旧量子论的基础上发展起来的。

旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。

1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。

1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。

其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。

1913年,玻尔在卢瑟福有核原子模型的基础上建立起原子的量子理论。

按照这个理论,原子中的电子只能在分立的轨道上运动,原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。

这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。

在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出微观粒子具有波粒二象性的假说。

德布罗意认为:

正如光具有波粒二象性一样,实体的微粒(如电子、原子等)也具有这种性质,即既具有粒子性也具有波动性。

这一假说不久就为实验所证实。

由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。

当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。

量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。

在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。

为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。

这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。

当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。

当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。

这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。

量子力学和狭义相对论的结合产生了相对论量子力学。

经狄拉克、海森伯和泡利等人的工作发展了量子电动力学。

20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。

量子力学是在旧量子论建立之后发展建立起来的。

旧量子论对经典物理理论加以某种人为的修正或附加条件以便解释微观领域中的一些现象。

由于旧量子论不能令人满意,人们在寻找微观领域的规律时,从两条不同的道路建立了量子力学。

1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔丹一起建立起矩阵力学;

1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;

狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式。

量子力学的基本内容

量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。

在量子力学中,一个物理体系的状态由波函数表示,波函数的任意线性叠加仍然代表体系的一种可能状态。

状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;

测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其波函数的作用;

测量的可能取值由该算符的本征方程决定,测量的期待值由一个包含该算符的积分方程计算。

波函数的平方代表作为其变数的物理量出现的几率。

根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。

关于量子力学的解释涉及许多哲学问题,其核心是因果性和物理实在问题。

按动力学意义上的因果律说,量子力学的运动方程也是因果律方程,当体系的某一时刻的状态被知道时,可以根据运动方程预言它的未来和过去任意时刻的状态。

但量子力学的预言和经典物理学运动方程(质点运动方程和波动方程)的预言在性质上是不同的。

在经典物理学理论中,对一个体系的测量不会改变它的状态,它只有一种变化,并按运动方程演进。

因此,运动方程对决定体系状态的力学量可以作出确定的预言。

但在量子力学中,体系的状态有两种变化,一种是体系的状态按运动方程演进,这是可逆的变化;

另一种是测量改变体系状态的不可逆变化。

因此,量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。

在这个意义上,经典物理学因果律在微观领域失效了。

据此,一些物理学家和哲学家断言量子力学摈弃因果性,而另一些物理学家和哲学家则认为量子力学因果律反映的是一种新型的因果性——几率因果性。

量子力学中代表量子态的波函数是在整个空间定义的,态的任何变化是同时在整个空间实现的。

20世纪70年代以来,关于远隔粒子关联的实验表明,类空分离的事件存在着量子力学预言的关联。

这种关联是同狭义相对论关于客体之间只能以不大于光速的速度传递物理相互作用的观点相矛盾的。

于是,有些物理学家和哲学家为了解释这种关联的存在,提出在量子世界存在一种全局因果性或整体因果性,这种不同于建立在狭义相对论基础上的局域因果性,可以从整体上同时决定相关体系的行为。

量子力学用量子态的概念表征微观体系状态,深化了人们对物理实在的理解。

微观体系的性质总是在它们与其他体系,特别是观察仪器的相互作用中表现出来。

人们对观察结果用经典物理学语言描述时,发现微观体系在不同的条件下,或主要表现为波动图象,或主要表现为粒子行为。

而量子态的概念所表达的,则是微观体系与仪器相互作用而产生的表现为波或粒子的可能性。

量子力学表明,微观物理实在既不是波也不是粒子,真正的实在是量子态。

真实状态分解为隐态和显态,是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。

微观体系的实在性还表现在它的不可分离性上。

量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。

关于远隔粒子关联实验的结论,也定量地支持了量子态不可分离性的观点。

瑞利-金斯用经典电磁理论及统计物理学,得到:

 

此公式在低频部分与实验符合,在高频则与实验结果偏离很大,当时,,是发散的,称“紫外灾难”。

1916年美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。

量子力学的产生与发展

量子力学是描述微观世界结构、运动与变化规律的物理科学。

它是20世纪人类文明发展的一个重大飞跃,量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步做出重要贡献。

19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象一个接一个地发现了。

德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。

德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:

在热辐射的产生与吸收过程中能量是以hV为最小单位,一份一份交换的。

这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且与辐射能量和频率无关由振幅确定的基本概念直接相矛盾,无法纳入任何一个经典范畴。

当时只有少数科学家认真研究这个问题。

  著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。

1913年丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定(按经典理论,原子中电子绕原子核作圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核,与正电荷中和),提出定态假设:

原子中的电子并不像行星一样可在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nh,n称之为量子数。

玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差AE=hV确定,即频率法则。

这样,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了72号元素铅的发现,在随后的短短十多年内引发了一系列的重大科学进展。

这在物理学史上是空前的。

  由于量子论的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1