田间试验与统计分析教案Word文件下载.docx
《田间试验与统计分析教案Word文件下载.docx》由会员分享,可在线阅读,更多相关《田间试验与统计分析教案Word文件下载.docx(22页珍藏版)》请在冰豆网上搜索。
田间试验的任务,田间试验的实验室试验、盆栽试验等的关系。
田间试验的要求:
(一)试验目的要明确;
(二)试验结果要可靠;
(三)试验条件要有代表性;
(四)试验结果要能够重复。
试验方案
试验方案的概念,田间试验的种类——单因素试验、多因素试验和综合性试验。
试验因素的效应和交互作用,确定试验方案的要点。
田间试验的布置与管理
田间试验计划的制订。
试验地准备和田间区划,种子准备,播种或移栽,栽培管理,观察记载,收获及脱粒。
试验误差的概念,试验误差的来源分为:
(一)试验材料固有的差异;
(二)农事操作和管理技术不一致;
(三)土壤差异以及肥力不均、病虫害侵袭等。
控制误差的途径。
作业或练习
习题3、4、5、8、10
第二章资料的整理与描述
掌握变数、变量、总体、样本、参数和统计数的概念;
了解连续性变数、间断性变数的特征和次数分布,掌握两种变数次数分布表、次数分布图的制作。
初步了解变数分布的特点;
掌握算术平均数、几何平均数、中位数及众数的意义和计算方法;
掌握总体与样本访方差、标准差和变异系数的意义、计算方法,以及利用次数分布表计算平均数和标准差的方法。
总体、样本和随机样本的概念
总体、有限总休、无限总体、观察值、变数、总体参数的意义。
样本的意义,样本统计数、总体参数的估计值概念。
随机样本、对总体的无偏估计概念。
次数分布
一、试验资料的性质:
(一)数量性状的资料:
(1)用计数方法获得的不连续或间断性变数;
(2)用量测方法获得的连续性变数。
(二)质量性状的资料:
(1)用计数方法所得的资料;
(2)给予每类性状以相当等级方法所得资料。
二、次数分布表:
制作次数分布表的意义。
间断性变数资料的整理,连续性变数的整理;
确定组数、组距、组限、
组中点值和数据归组的方法,做成次数分布表。
属性变数资料的整理。
三、次数分布图:
方柱形图、多边形图适用于表示连续性变数的次数分布资料。
条形图适用于间断性变数和属性变数的资料。
三种图形的绘制方法。
平均数
平均数的意义和种类:
算术平均数、中数、众数、几何平均数。
算术平均数的计算方法,算术平均数的主要特性:
(一)离均差的总和等于零;
(二)离均差平方的总和较各观察值与任意数值的差数平方的总和为小。
有限总体的平均数。
变异数
资料变异数的意义和种类:
一、极差(又称全距):
利用两个极端观察值的相差来估测资料的变异度。
二、方差:
方差的意义,以样本平均数作为共同比较的标准,利用全部观察值与平均数的差数平方的总和,再被其自由度除后的商数来度量资料的变异度。
样本和总体的均方(或称方差)的计算公式。
三、标准差:
为方差的平方根值。
(一)自由度的意义;
(二)标准差的计算方法:
1.直接计算法;
2.矫正数法。
四、变异系数:
乃一样本的标准差对其平均数的百分数,用以比较两个样本的变异度。
由次数分布表计算平均数和标准差
一、加权法:
平均数的计算公式和方法,标准差的计算公式和方法。
二、等级差法:
习题1、2、3、4、5、6
第三章常用概率分布
理解变量与随机事件关系,掌握概率基本运算方法;
掌握间断性变数的理论分布(如二项分布、泊松分布)及其概率运算,掌握连续性变数正态分布的基本特征,并能进行正态随机变量的概率运算。
了解无偏估计概念和中心极限定理;
掌握样本平均数及平均数差数分布的特征,理解标准差误的概念。
理解抽样分布的概念,总体参数与样本统计数之间的关系
理解在二项总体中抽样时,样本总和数及平均数(成数)的概率分布和它们之间的关系。
概率的概念及其计算法则
事件、概率的概念,统计概率的定义,“小概率实际不可能性”原理。
复合事件的意义和关系,计算概率的法则。
二项分布
重复试验的概率分布,随机变数的概率函数f(x)和随机变数的累积函数F(x)的概念和实例。
二项分布事例及其分布的参数,概率函数和累积函数的计算方法。
正态分布
二项分布的极限事例引导出正态分布方程,正态分布方程的解释,正态分布曲线的特性。
计算正态分布曲线区间面积或概率的方法,累积函数和分布密度函数的意义和应用,一尾概率和两尾概率的意义。
抽样分布
抽样分布试验的概念,样本平均数的抽样分布,分布的平均数的方差计算,分布作成为正态分布N(x,2),中心极限定理,说明如总体不是正态分布,但样本容量适当大时,平均数分布仍为正态分布。
两个正态总体抽出的独立样本的平均差数分布作正态分布及其差数:
N
(2)()(1212)。
二项总体抽样
百分数或成数数据均作为二项总体。
二项总体的分布分三种:
二项分布、样本平均数(成数P)分布和样本总和数(次数x)分布。
三种二项总体的抽样分布的参数(平均数和标准差)彼此间的关系以及应用实例。
作业或练习
习题3、4、6、7、10
第四章假设检验
了解统计假设测验的意义和内容,掌握统计假设测验的步骤和方法,接受或否定无效假设的原理。
了解一尾测验和两尾测验的使用场合与区别;
理解假设测验的两类错误(、β错误),减小两类错误的方法
掌握t分布的特点及t测验的方法,掌握单个样本、两个样本平均数间差异显著性测验(分成组比较和成对比较两种情况下的测验)的方法
能进行百分数之间的比较测验;
理解参数的区间估计的概念,掌握计算置信区间的方法。
统计假设测验的基本原理
统计假设的基本概念。
测验的基本方法:
(一)对总体提出一个假设。
(二)在假设是正确的假定下,研究样本统计的抽样分布。
(三)根据“小概率事件实际不可能性”原理来接受或否定假设。
显著水平的概念。
否定区域或接受区域的概念。
两尾测验和一尾测验的区别及其应用,假设测验中的两类错误及其控制途径。
平均数的假设测验
平均数假设测验采用U测验(大样本)和t测验(小样本)。
t分布及其性质,t表的应用以及它和正态分布(x)值表的关系。
单个样本平均数的假设测验;
两个样本平均数相比较的假设测验;
(一)成组数据的平均数比较分
为三种测验方法:
1.在两个样本的总体方差21和22为已知时,用U测验;
2.在两个样本的总体方差21和22为未知,但可假定相等,用t测验;
3.两个样本的总体方差21和22为未知,且不相等,仍用t测验,但须另估计t
的自由度(又称近似的t测验)。
(二)成对数据的比较:
比较的应用条件及测验计算方法。
百分数的假设测验
二项总体抽样的单个样本百分数的假设测定。
两个样本百分数相比较的假设测验。
百分数假设测验的连续性矫正,性质和矫正方法。
参数的区间估计
点估计和区间估计,置信区间和置信限,置信度的概念。
总体平均数的置信区间估计:
(一)在总体方差2为已知时和
(二)总体方差2为未知,但从样本均方2S估计。
两个总体平均数差数(21)的置信区间估计。
习题4、5、6、7、10、11
第五章方差分析的基本原理与步骤
了解平均数个数K≥3时的t、u测验存在的问题和解决方法;
理解方差分析的基本原理,掌握分解资料平方和与自由度的方法,理解F分布以及利用F分布进行测验的原理、程序和方法。
掌握应用、和q法等进行多重比较的程序。
理解方差分析的线性模型和期望均方。
了解固定模型、随机模型及混合模型的概念,能根据期望均方进行F测验。
掌握单向分组资料、两向分组资料和系统分组资料的方差分析,并能对分析结果作出科学合理的解释。
了解方差分析的基本假定和数据转换方法。
方差分析的基本原理
数据结构的线性模型与自由度和平方和的分解。
自由度和平方和的加性恒等式。
F分布及其性质,F测验与F表的应用。
多重比较(平均数间比较)的意义和方法,分为最小显著差数法(法)和最小显著极差法(法)两类,法中又分为新复极差测验(法)和q测验。
表和q表的应用。
多重比较的表示方法。
单向分组资料的方差分析
资料按单向分组的概念,单向分组的数据结构模型。
各个组具有观察值数目相等与不相等情况的方差分析。
组内又分为亚组的单向分组资料(系统分组)资料的性质及其方差分析。
两向分组资料的方差分析
资料按两向分组(交叉分组)的概念,组合内仅有单个观察值的两向分组资料的方差分析,方差分析中剩余项变异的性质。
组合内有重复观察值的两向分组资料的方差分析。
方差分析的基本假定和数据转换
方差分析的基本假定:
处理效应、环境效应及试验误差的可加性;
试验误差随机性、相互独立的,而且作正态分布N(0,2),以及误差的同质性。
数据转换的意义,转换的种类有平方根转换、反正弦转换和对数转换,每种转换的作用。
期望均方估计
介绍期望均方的概念,固定模型和随机模型的区别和应用。
习题6、7、8、9
第六章方差分析的实际应用
掌握顺序排列设计包括对比法和间比法试验结果的统计分析和随机排列设计中完全随机试验、随机区组试验和拉丁方试验结果的方差分析。
理解这些试验分析的区别与联系,并能对分析结果作出科学合理的解释。
对比和间比试验的统计分析、完全随机和随机区组试验的统计分析、拉丁方试验的统计分析
对比和间比试验的统计分析
对比法试验结果的统计分析实例,以对邻近对照区的百分数作评定标准,小区产量换算为亩产量的方法。
间比法试验结果的统计分析实例,以相邻对照区平均数的百分数作评定标准。
完全随机和随机区组试验的统计分析
完全随机试验设计的统计分析方法参见第五章第二节。
随机区组试验结果的分析示例,包括自由度和平方和的分解,方差分析和F测验,处理平均数间多重比较的三个步骤。
缺区估计和分析。
拉丁方试验的统计分析
拉丁方试验结果的分析示例,包括自由度、平方和分解,方差分析和F测验以及处理间比较步骤。
缺区估计