中考复习专题:隐圆Word文档格式.doc

上传人:b****2 文档编号:14277404 上传时间:2022-10-21 格式:DOC 页数:14 大小:337.50KB
下载 相关 举报
中考复习专题:隐圆Word文档格式.doc_第1页
第1页 / 共14页
中考复习专题:隐圆Word文档格式.doc_第2页
第2页 / 共14页
中考复习专题:隐圆Word文档格式.doc_第3页
第3页 / 共14页
中考复习专题:隐圆Word文档格式.doc_第4页
第4页 / 共14页
中考复习专题:隐圆Word文档格式.doc_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

中考复习专题:隐圆Word文档格式.doc

《中考复习专题:隐圆Word文档格式.doc》由会员分享,可在线阅读,更多相关《中考复习专题:隐圆Word文档格式.doc(14页珍藏版)》请在冰豆网上搜索。

中考复习专题:隐圆Word文档格式.doc

如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的小值是_______

式5:

在Rt△ABC中,∠C=90°

,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是___________

变式6:

如图,在△ABC中,∠ACB=90°

,AB=5,BC=3,是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是__________.

变式7:

如图,在平行四边形ABCD中,∠BCD=30°

,BC=4,CD=,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是_________.

练习:

如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.

(1)当AN平分∠MAB时,求DM的长;

(2)连接BN,当DM=1时,求△ABN的面积;

(3)当射线BN交线段CD于点F时,求DF的最大值.

2.共端点两条线段为定长

在△ABC中,AC=4,AB=5,则△ABC面积的最大值为_____________

变式1:

已知在四边形ABCD中,AD+DB+BC=16,则四边形ABCD面积的最大值为_______.

在△ABC中,AB=3,AC=当∠B最大,BC的长是_______.

3.共端点三条线段为定长

引列如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°

,则∠CAD的度数为_________.

引列图变式1图

如图,在四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2,则BD=_______.

变式2图变式3图

如图,在等腰△ABC中,AC=BC,∠C=70°

,点P在△ABC的外部,且与点C均在AB的同侧.如果PC=BC,那么∠APC=________.

如图,在△OAB中,OA=OB,∠AOB=15°

.在△OCD中,OC=OD,∠COD=45°

,且点C在OA边上.连接CB,将线段OB绕着点O逆时针旋转一定角度得到线段OE,使得DE=OE,则∠BOC的度数为_________.

知识架构

如图,点A(2,0),B(6,0),CB⊥x轴于点AC,在y轴正半轴求作点P,使∠APB=∠ACB.(尺规作图,保留作图痕迹)

归纳:

当某条边与该边所对的角是定值时,该角的定点的轨迹是圆弧

方法:

见直角找斜边(定长)想直径定外心现“圆”形。

引例已知A,B两点在直线L的异侧,在L上求作点P,使△PAB为直角三角形,(尺规作图,保留痕迹)

如图,在等腰Rt△ABC中,∠ACB=90°

,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于点H,连接AH,则AH的最小值为________.

如图,在正方形ABCD中,AB=2,动点E从点A出发向点D运动,同时动点F从点D出发向点C运动,点E,F运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF,BE相交于点P,则线段DP的最小值为________.

直线y=x+4分别与x轴,y轴相交于M,N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交于P.若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是________.

方法三:

见定角→找对边(定长)→想周角→转心角→现“圆”形.

问题提出:

如图,已知线段AB,试在平面内找到符合所有条件的点C,∠ACB=30°

(利用直尺和圆规作图,保留作图痕迹,不写作法)

自主探索1:

在平面直角坐标系中,已知点A(3,0),B(-1.0),C是y轴上一动点.当∠BCA=45°

时,点C的坐标为________.

自主探索1图自主探索2图

自主探索2:

在平面直角坐标系中,已知点A(3,0),B(-1,0),C是y轴上一动点.当∠BCA=60°

时,点C的坐标为_______.

自主探索3图自主探索4图

自主探索3:

在平面直角坐标系中,已知点A(3,0),B(-1,0),C是y轴上一动点.当∠BCA=120°

自主探索4:

在平面直角坐标系中,已知点A(3,0),B(-1,0),C是y轴上一动点.当∠BCA=135°

如图,B是线段AC的终点,过点C的直线l于AC成60°

角,在直线l上取一点P,使∠APB=30°

,则满足条件的点P的个数是_______.

变式1图

如图,在边长为2的等边△ABC中,动点D,E分别在BC,AC边上,且保持AE=CD,连接BE,AD,相交于点P,则CP的最小值为_________.

如图,点A与点B的坐标分别是A(1,0),B(5,0),P是该平面直角坐标系内的一个动点.

(1)使∠APB=30°

的点P有_______个

(2)若点P在y轴上,且∠APB=30°

,求满足条件的点P的坐标

(3)当点P在y轴上移动时,∠APB是否存在最大值?

若存在,求点P的坐标;

若不存在,请说明理由.

变式4:

(1)请利用以上操作所获得的经验,在图①的矩形ABCD内部用直尺于圆规作出一点P,使点P满足:

∠BPC=∠BEC,且PB=PC。

(要求:

用直尺与圆规作出点P,保留作图痕迹)

图①图②

(2)如图②,在平面直角坐标系的第一象限内有一点B,坐标为(2,m),过点B作AB⊥y轴,BC⊥x轴,垂足分别为A,C若点P在线段AB上滑动(点P可以与A,B重合),发现使得∠OPC=45°

的位置有两个,则m的取值范围为_________.

变式5:

如图,已知抛物线y=ax²

+bx+c(a≠0)与x轴交于A(1,0),B(4,0)两点,与y轴交于点C(0,2),连接AC,BC。

(1)求抛物线的解析式;

(2)若BC的垂直平分线交抛物线于D,E两点,求直线DE的解析式;

(3)若点P在抛物线的对称轴上,且∠CPB=∠CAB,求出所有满足条件的点P的坐标。

二、结论类似于圆幂定理的形式时作辅助圆

例如图,在△ABC中,AB=AC=,D是边BC上的一点,且AD=1,求BD·

DC的值.

三、探究动点对定线段所张的角时作辅助圆

例1如图,在直角梯形ABCD中,AB∥DC,∠B=90°

,设AB=a,DC=b,AD=c,当a、b、c之间满足什么关系时,在直线BC上存在点P,使AP⊥PD?

例2如图,在平面直角坐标系xOy中,给定y轴正半轴上的两点A(0,8)、B(0,2),试在x轴正半轴上求一点C,使∠ACB取得最大值。

例3已知Rt△ABC中,AC=5,BC=12,∠ACB=90°

,P是边AB上的动点,Q是边BC上的动点,且∠CPQ=90°

,求线段CQ的取值范围.

四、四点共圆

判断四点共圆的常用方法有

(1)对角互补的四边形的四个顶点共圆;

(2)同底同侧顶角相等的两个三角形的四个顶点共圆.判断四点共圆后,就可以借助过这四点的辅助圆解题.

例1如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F,求证:

FE=DE.

例2如图等边△PQR内接于正方形ABCD,其中点P、Q、R分别在边AD、AB、DC上,M是QR的中点,求证:

不论等边△PQR怎样运动,点M为不动点.

例3如图,正方形ABCD的中心为O,面积为1989,P为正方形内的一点,且∠OPB=45°

,PA∶PB=5∶14,求PB的长. 

     

练习

1.在直角坐标系中,过A(-1,0)和B(3,0)的⊙M上有点P.

(1)若cos∠APB=(∠APB是锐角),求⊙M的半径;

(2)在y轴上,是否存在一点D,使得∠ADB=45°

若存在,求出点D的坐标.

2.在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,将直线沿轴向上平移3个单位长度后恰好经过两点.

(1)求直线及抛物线的解析式;

(2)设抛物线的顶点为,点在抛物线的对称轴上,且,求点的坐标.

3.已知平面直角坐标系中两定点A(-1,0)B(4,0)、,抛物线过点A、B顶点为C,点P(m,n)n<

0为抛物线上一点.

(1)求抛物线的解析式和顶点C的坐标;

(2)当为钝角时,求的取值范围.

4.如图,已知点A(1,0),B(0,3),C(-3,0),动点P(x,y)在线段AB上,CP交y轴于点D,设BD的长为t.

(1)求t关

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1