高考数学大一轮复习 第五章 数列课时作业35 理 新人教A版Word下载.docx

上传人:b****2 文档编号:14201889 上传时间:2022-10-20 格式:DOCX 页数:12 大小:197.93KB
下载 相关 举报
高考数学大一轮复习 第五章 数列课时作业35 理 新人教A版Word下载.docx_第1页
第1页 / 共12页
高考数学大一轮复习 第五章 数列课时作业35 理 新人教A版Word下载.docx_第2页
第2页 / 共12页
高考数学大一轮复习 第五章 数列课时作业35 理 新人教A版Word下载.docx_第3页
第3页 / 共12页
高考数学大一轮复习 第五章 数列课时作业35 理 新人教A版Word下载.docx_第4页
第4页 / 共12页
高考数学大一轮复习 第五章 数列课时作业35 理 新人教A版Word下载.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

高考数学大一轮复习 第五章 数列课时作业35 理 新人教A版Word下载.docx

《高考数学大一轮复习 第五章 数列课时作业35 理 新人教A版Word下载.docx》由会员分享,可在线阅读,更多相关《高考数学大一轮复习 第五章 数列课时作业35 理 新人教A版Word下载.docx(12页珍藏版)》请在冰豆网上搜索。

高考数学大一轮复习 第五章 数列课时作业35 理 新人教A版Word下载.docx

由题得an-an-1=()n-1,所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=()n-1+()n-2+…++1=(1-).

A

5.已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列的前100项和为(  )

设等差数列{an}的首项为a1,公差为d.

∵a5=5,S5=15,∴

∴∴an=a1+(n-1)d=n.

∴==-,

∴数列的前100项和为

1-+-+…+-=1-=.

6.已知函数f(n)=n2cosnπ,且an=f(n)+f(n+1),则a1+a2+a3+…+a100=(  )

A.0B.-100

C.100D.10200

f(n)=n2cosnπ==(-1)n·

n2,

由an=f(n)+f(n+1)=(-1)n·

n2+(-1)n+1·

(n+1)2=(-1)n[n2-(n+1)2]=(-1)n+1·

(2n+1),

得a1+a2+a3+…+a100=3+(-5)+7+(-9)+…+199+(-201)=50×

(-2)=-100.

B

二、填空题

7.设Sn=+++…+,若Sn·

Sn+1=,则n的值为________.

Sn=1-+-+-+…+-

=1-=,

∴Sn·

Sn+1=·

==,解得n=6.

6

8.数列,,,,…的前n项和Sn为________.

∵=1+,=2+,=3+,=4+,…

∴Sn=++++…+(n+)

=(1+2+3+…+n)+(+++…+)

=+=+1-.

+1-

9.已知f(x)=,求f+f+…+f=

________.

因为f(x)+f(1-x)=+

=+=+=1.

所以f+f=f+f=…=f+f=1.∴f+f+…+f=5.

5

三、解答题

10.(xx·

安徽卷)数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.

(1)证明:

数列{}是等差数列;

(2)设bn=3n·

,求数列{bn}的前n项和Sn.

解:

(1)由已知可得=+1,即-=1

所以{}是以=1为首项,1为公差的等差数列.

(2)由

(1)得=1+(n-1)·

1=n,所以an=n2,从而bn=n·

3n

Sn=1×

31+2×

32+3×

33+…+n·

3n ①

3Sn=1×

32+2×

33+3×

34+…+(n-1)·

3n+n·

3n+1 ②

①-②得:

-2Sn=31+32+33+…+3n-n·

3n+1

=-n·

3n+1=

所以Sn=.

11.(xx·

山东卷)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.

(1)求数列{an}的通项公式;

(2)令bn=(-1)n-1,求数列{bn}的前n项和Tn.

(1)因为S1=a1,S2=2a1+×

2=2a1+2,

S4=4a1+×

2=4a1+12,

由题意得(2a1+2)2=a1(4a1+12),

解得a1=1,所以an=2n-1.

(2)bn=(-1)n-1=(-1)n-1

=(-1)n-1.

当n为偶数时,Tn=-+…+-=1-=.

当n为奇数时,Tn=-+…-+=1+=.

所以Tn=

.

1.设等差数列{an}的前n项和是Sn,若-am<

a1<

-am+1(m∈N*,且m≥2),则必定有(  )

A.Sm>

0,且Sm+1<

0B.Sm<

0,且Sm+1>

C.Sm>

0D.Sm<

∵-am<

-am+1,∴a1+am>

0,a1+am+1<

0,∴Sm>

0.

2.已知数列{an}:

,+,++,…,+++…+,…,若bn=,那么数列{bn}的前n项和Sn为(  )

an==,

∴bn===4(-),

∴Sn=4[(1-)+(-)+…+(-)]

=4(1-)=.

3.数列{an}的前n项和为Sn,已知a1=,且对任意正整数m,n,都有am+n=aman,若Sn<

t恒成立,则实数t的最小值为________.

令m=1,则=a1,

∴{an}是以a1为首项,为公比的等比数列.

∴an=n,

∴Sn==

=-<

由Sn<

t恒成立,

∴t>

Sn的最大值,可知t的最小值为.

4.已知数列{an}中,a1=1,an+1=(n∈N*).

(1)求证:

是等比数列,并求{an}的通项公式an;

(2)数列{bn}满足bn=(3n-1)·

·

an,数列{bn}的前n项和为Tn,若不等式(-1)nλ<

Tn+对一切n∈N*恒成立,求λ的取值范围.

(1)由an+1=得==1+,

即+=3,又+=,

∴是以为首项,3为公比的等比数列,

∴+=×

3n-1=,即an=.

(2)bn=,Tn=1×

+2×

+3×

+…+(n-1)×

+n×

=1×

两式相减得=+++…+-n×

=2-,

∴Tn=4-,∴(-1)nλ<

4-.

若n为偶数,则λ<

4-,∴λ<

3;

若n为奇数,则-λ<

4-,

∴-λ<

2,∴λ>

-2.∴-2<

λ<

3.

 

2019-2020年高考数学大一轮复习第五章数列课时作业36理新人教A版

1.已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则b2·

(a1+a2)=(  )

A.20B.30

C.35D.40

∵1,a1,a2,9是等差数列,所以a1+a2=1+9=10;

1,b1,b2,b3,9是等比数列,所以b=1×

9=9,因为b=b2>

0,所以b2=3,所以b2·

(a1+a2)=30,故选B.

2.已知等比数列{an}中的各项都是正数,且5a1,a3,4a2成等差数列,则=(  )

A.-1B.1

C.52nD.52n-1

设等比数列{an}的公比为q(q>

0),则依题意有a3=5a1+4a2,即a1q2=5a1+4a1q,q2-4q-5=0,解得q=-1或q=5.又q>

0,因此q=5,所以==q2n=52n.

3.在直角坐标系中,O是坐标原点,P1(x1,y1),P2(x2,y2)是第一象限的两个点,若1,x1,x2,4依次成等差数列,而1,y1,y2,8依次成等比数列,则△OP1P2的面积是(  )

A.1B.2

C.3D.4

根据等差、等比数列的性质,可知x1=2,x2=3,y1=2,y2=4.∴P1(2,2),P2(3,4).∴S△OP1P2=1.

4.已知函数y=loga(x-1)+3(a>

0,a≠1)所过定点的横、纵坐标分别是等差数列{an}的第二项与第三项,若bn=,数列{bn}的前n项和为Tn,则T10等于(  )

由y=loga(x-1)+3恒过定点(2,3),即a2=2,a3=3,又{an}为等差数列,∴an=n,n∈N*.∴bn=,∴T10=-+-+…+-=1-=.

5.如图所示,矩形AnBnCnDn的一边AnBn在x轴上,另外两个顶点Cn,Dn在函数f(x)=x+(x>

0)的图象上.若点Bn的坐标为(n,0)(n≥2,n∈N*),记矩形AnBnCnDn的周长为an,则a2+a3+…+a10=(  )

A.208B.216

C.212D.220

由Bn(n,0),得Cn,令x+=n+,即x2-x+1=0,得x=n或x=,所以Dn,所以矩形AnBnCnDn的周长an=2+2=4n,则a2+a3+…+a10=4(2+3+…+10)=216,故选B.

6.对于函数y=f(x),部分x与y的对应关系如下表:

x

1

2

3

4

7

8

9

y

数列{xn}满足x1=1,且对任意x∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,则x1+x2+x3+x4+…+x2013+x2014的值为(  )

A.7549B.7545

C.7539D.7535

由已知表格列出点(xn,xn+1),(1,3),(3,5),(5,6),(6,1),(1,3),…,即x1=1,x2=3,x3=5,x4=6,x5=1,…,数列{xn}是周期数列,周期为4,2014=4×

503+2,所以x1+x2+…+x2014=503×

(1+3+5+6)+1+3=7549.

7.数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}的连续三项,则数列{bn}的公比为________.

由题意知a=a1·

a7,即(a1+2d)2=a1·

(a1+6d),∴a1=2d,∴等比数列{bn}的公比q===2.

8.函数y=x2(x>

0)的图象在点(ak,a)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=________.

依题意得,函数y=x2(x>

0)的图象在点(ak,a)处的切线方程是y-a=2ak(x-ak).令y=0,得x=ak,即ak+1=ak,因此数列{ak}是以16为首项,为公比的等比数列,所以ak=16·

k-1=25-k,a1+a3+a5=16+4+1=21.

21

9.在等差数列{an}中,a2=5,a6=21,记数列{}的前n项和为Sn,若S2n+1-Sn≤对n∈N*恒成立,则正整数m的最小值为________.

由{an}为等差数列,a2=5,a6=21得,d==4,an=5+4(n-2)=4n-3,而数列{S2n+1-Sn}有(S2n+3-Sn+1)-(S2n+1-Sn)=S2n+3-S2n+1+Sn-Sn+1=+-<

0得{S2n+1-Sn}单调递减,其最大值为S3-S1=,即≥得m≥,所以m最小值为5.

10.设各项均为正数的数列{an}的前n项和为Sn,且Sn满足S-(n2+n-3)Sn-3(n2+n)=0,n∈N*.

(1)求a1的值;

(2)求数列{an}的通项公式;

(3)证明:

对一切正整数n,有++…+<

(1)令n=1代入得a1=2(负值舍去).

(2)由S-(n2+n-3)Sn-3(n2+n)=0,n∈N*得[Sn-(n2+n)](S

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 兵器核科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1