结构设计规范Word格式.docx

上传人:b****1 文档编号:14170183 上传时间:2022-10-19 格式:DOCX 页数:15 大小:180KB
下载 相关 举报
结构设计规范Word格式.docx_第1页
第1页 / 共15页
结构设计规范Word格式.docx_第2页
第2页 / 共15页
结构设计规范Word格式.docx_第3页
第3页 / 共15页
结构设计规范Word格式.docx_第4页
第4页 / 共15页
结构设计规范Word格式.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

结构设计规范Word格式.docx

《结构设计规范Word格式.docx》由会员分享,可在线阅读,更多相关《结构设计规范Word格式.docx(15页珍藏版)》请在冰豆网上搜索。

结构设计规范Word格式.docx

1、在电磁兼容性设计中遇到的常用测试项目,从干扰源与被干扰对象角度可分为两类:

EMI(电磁发射测试)和EMS(电磁敏感度测试)。

EMI(电磁发射):

被测设备为干扰源,测试被测设备对外界发射的电磁干扰水平。

EMS(电磁敏感度):

被测设备为被干扰对象,通过测试仪器对其施加干扰,测试其抗干扰能力。

从干扰路径区分,又可分为传导测试与辐射测试两类.

综合起来测试项目可分为四种测试模式:

CE-传导发射测试,CS-传导敏感度测试;

RE-辐射发射测试,RS-辐射敏感度测试。

2、GJB151A—97常用测试项目表

表1GJB151A-97常用项目

分类

传导

名称

辐射

EMI

(电磁发射测试项目)

CE101

25Hz~10KHz电源线传导发射

RE101

25Hz~100KHz磁场辐射发射

CE102

10KHz~10MHz电源线传导发射

RE102

10KHz~18GHz电场辐射发射

EMS

(电磁敏感度测试项目)

CS101

25Hz~10KHz电源线传导敏感度

RS101

25Hz~100KHz磁场辐射敏感度

CS106

电源线尖峰信号传导敏感度

RS103

10KHz~18GHz电场辐射敏感度

CS114

10KHz~400MHz电缆束注入传导敏感度

CS115

电缆束注入脉冲激励传导敏感度

CS116

10KHz~100MHz电缆和电源线阻尼正弦瞬变传导敏感度

其中与结构设计关系较大的有CE101、CE102、RE101、RE102、CS101、RS101、RS103。

3、汽车电子设备常用测试项目表

图1汽车电子常用测试项目

三、设计规范

3.1、屏蔽

电磁屏蔽的目的有两个:

一个限制内部的辐射电磁能越出某一个区域;

而是防止外来的辐射进入某一区域.即切断电磁波的传播途径。

电磁屏蔽是解决电磁兼容问题的重要手段之一,绝大部分电磁兼容问题的最大好处是不会影响电路的工作。

电磁屏蔽技术作为解决电磁兼容性问题的重点措施之一.

屏蔽按其机理可以分为电场屏蔽、磁场屏蔽和电磁场屏蔽三种。

需要注意的是,在实际工程中,通常将电磁场屏蔽与电场屏蔽合二为一。

将屏蔽体接地即可实现电磁场屏蔽与电场屏蔽的统一。

3。

1。

1、电场屏蔽和电磁场屏蔽设计

3.1.1.1、电场屏蔽主要作用是防止静电场和低频交变电场的影响,消除两个设备或两个电路之间由于分布电容耦合所产生的影响。

在结构设计中通常为两个设备或两个模块之间的电场屏蔽。

若屏蔽的为交流源,则频率在10kHz以下时采用电场屏蔽,高于10kHz时屏蔽效果将会变差.

需要注意的是在电场屏蔽中,最重要的一点是屏蔽壳体的接地质量。

在电场屏蔽的设计中,主要考虑以下三个方面的问题:

a、屏蔽板尽量靠近CPU等被屏蔽元件,并且屏蔽板必须可靠接地,其作用从理论上来看,屏蔽板相当于造就了分布电容,且越靠近被屏蔽元件其分布电容的容量越大,其屏蔽效果越好。

b、屏蔽板的形状对屏蔽效能的高低有明显影响,理论上全封闭的金属盒可以有最好的电场屏蔽效果。

c、屏蔽板的材料以良导体(铝、铜等)为好,屏蔽材料的厚度满足强度要求即可.

1.2、电磁场屏蔽的有效性是用屏蔽效能来度量。

它表征了屏蔽体对电磁波的衰减程度。

屏蔽体的屏蔽效能由两部分构成:

吸收损耗和反射损耗。

为了提高屏蔽材料的屏蔽效能,必须想办法提高吸收损耗和反射损耗。

当电磁波入射到不同媒体的分界面时,就会发生反射,于是减小了继续传播电磁波的强度,于是构成反射损耗。

当电磁波在屏蔽材料中传播时,同样会产生损耗,于是构成吸收损耗。

吸收损耗的计算公式:

A=201g(E0/E1)=20lg(e^(t/δ))dB

式中趋肤深度δ=0.066/(fμrσr)^0。

5mm,f单位为MHz。

表2常用金属的趋肤深度表(单位为毫米)

频率Hz

μ金属

100

6。

6

8。

38

0。

66

0.48

1K

2.08

2.67

2

0.08

10K

89

76

1M

08

008

10M

0.02

0.025

0.0025

从吸收损耗的公式可以得出以下结论:

a、屏蔽材料的吸收损耗和屏蔽材料的厚度、磁导率、电导率成正比;

b、屏蔽材料的吸收损耗和被屏蔽电磁波的频率成正比;

c、屏蔽材料的厚度每增加一个趋肤深度,吸收损耗增加约9dB。

反射损耗的因素:

电场反射损耗的计算公式:

Re=322+10lgσr/μrf^3r^2

磁场反射损耗的计算公式:

Rn=322+10lgμrf^3r^2/μr

式中:

f为入射电磁波的频率;

σr为相对电导率;

μr为相对磁导率.

从上述理论的综合屏蔽效能来看,在低频段,由于趋肤深度很大,屏蔽效能主要取决于反射损耗.在高频段,随着频率的升高,电磁波的反射损耗减小,吸收损耗增加,屏蔽效能主要由吸收损耗决定。

实际工程案例:

如果需要对一个机箱做电场屏蔽和电磁场屏蔽,需要做哪些措施?

1、屏蔽体的材料选择.

铜虽然导电性好,但是密度较大,不适合做屏蔽机箱。

铝具有很高的比强度,同时导电性能也非常好,通过用来做屏蔽机箱。

如果对屏蔽效能要求不高,亦可采用其他材料比如镀锌钢板。

2、良好接地。

通常是通过接地柱接到大地的方式。

接地柱示意图如下:

需要注意的是,此接地柱仅为电场屏蔽接地用。

如果有信号地及其他地需要连接,壳体内部亦应该采用焊片良好接地。

焊片材料一般为黄铜H-62.

另外,壳体与焊片之间保持良好导电连接,严禁做任何非导电涂覆。

3、屏蔽体的缝隙和开孔处理。

典型值:

λ/20.λ为频段中最高频率电磁波波长。

缝隙的长度和开孔的直径应小于λ/20,最好小于λ/100.

通风孔直径采用小圆孔,典型值Φ3.Φ3孔阵的打孔金属板在1GHz时,屏蔽效能在20dB左右。

缝隙处理。

机箱至少是两个零件的组合体,盒体和盖板。

而盒体和盖板之间一般情况下需要经常拆卸,不可能用焊接完全密封。

要取得良好的屏蔽效能,必须使盒体和盖板间的接触电阻减至最小。

通常做法是:

a、控制盒体和盖板之间接合面的粗糙度,以3.2及以下为宜。

b、盒体和盖板做表面处理时严禁做非导电处理,比如应该对铝材进行导电氧化而不是硫酸阳极化。

c、控制固定盒体和盖板之间的螺钉间隙,以30—40为宜,尽量不超过50.

d、盒体和盖板在装配后一起进行涂覆处理,以保护接合面的导电接触。

e、增加接缝深度,典型值9.示意图如下:

f、如需更高要求,则需在接合面之间安装导电屏蔽衬垫(见后面表3)。

g、采用双层盖板屏蔽可以达到非常高的屏蔽效果,但由于结构复杂,成本较高,一般不采用。

开孔处理。

机箱内设备功率较大时,通常需要布置通风孔,进行通风散热.

通常做法为:

a、在不影响散热的情况下,通风孔应尽量小(典型值Φ3)。

b、通风孔位置应尽量远离干扰源.

4、显示窗和屏的处理。

隔离舱

滤波器

屏蔽窗

5、按键的处理,示意图如下:

屏蔽体上开小孔

屏蔽体上栽上截止波导管

用隔离舱将操作器件隔离出

6、控制轴的处理。

比如旋钮等。

控制轴采用非金属轴和加截止波导管处理。

3.1。

2、磁场屏蔽设计

磁场屏蔽通常指低频磁场(DC~100KHZ).主要依赖高磁导率材料所具有的低磁阻,对磁通起着分路的作用,使屏蔽体内部的磁场大大减弱。

磁场屏蔽效能在理论上为:

SE=(Rs+R0)/Rs

式中Rs:

屏蔽体的磁阻;

R0:

空气磁阻

磁阻Rs=S/(μA)

式中S:

磁路长度;

A:

此路截面积

对上述计算公式进行分析,提高屏蔽效能的主要措施有:

a、高磁导率的材料;

b、增加屏蔽体壁厚,即增加磁路的截面积;

屏蔽盒一般由板料用钣金工艺加工或冷冲成型,结构上难免含有接缝或通风、观察孔等。

接缝和孔洞的存在都会引起屏蔽体磁阻的增加,降低屏蔽效能。

工程上常用措施如下:

a、屏蔽对象的选择。

由于整体做低频磁屏蔽比较困难,所以一般选择对低频磁场干扰源进行屏蔽。

比如开关电源、电感线圈等。

b、屏蔽材料的选择.镀锌钢板性价比较高,铍镆合金性能最好.在强磁场中需选用磁饱和性能较高的材料,如硅钢。

c、屏蔽体的接缝要与磁通流经方向尽可能平行,降低磁阻。

下图为铁芯电源变压器的屏蔽盒示意图:

d、屏蔽盒上的通风孔应顺磁通方向。

如下示意图:

e、接缝的连接工艺及结构对屏蔽效能影响也较大.一般接缝处盖板和盒体之间的重叠部分为9mm,点焊间距为12mm时,接缝对磁屏蔽效能的影响可以不予考虑.螺钉连接时,也应该有尽可能多的重叠和尽可能小的螺钉间距。

示意图如下:

需要特别注意的一点是,铁磁性材料一般对机械应力较为敏感,因为机械应力的存在将使磁性材料的磁导率大大下降。

磁屏蔽体必须在机械加工全部完成之后进行退火处理.

当屏蔽效能要求较高时,可以采用双层屏蔽结构。

2、接地与搭接

3.3。

1、接地

在电子设备中,接地是抑制电磁噪声和防止干扰的重要手段之一.在设计中如果能把接地和屏蔽正确地配合使用,对实现电子设备的电磁兼容性将起着事半功倍的作用。

机壳的接地,通过接地柱连接大地。

电路板的接地,电路板螺钉连接处即是电路板的大地连接点.

低频电路一般采用单点接地方式。

射频、中频放大部分采用多点接地。

信号地与电源地要分开。

电缆屏蔽层的接地。

以同轴电缆为例,在传输高频信号(大于100kHz)时,屏蔽层应采用两点或多点接地;

传输低频信号时,屏蔽层应单点接地.实际经验表明,在100kHz以下,电缆屏蔽层单点接地具有最佳的磁场抑制作用。

另外,电缆屏蔽层不要在屏蔽盒体内部接地,否则容易在屏蔽盒体造成干扰,从而使屏蔽盒体的屏蔽效能降低。

2、搭接

搭接是将设备、组件、元件的金属外壳或构架用机械手段连接在一起,形成一个电气上连续的整体。

这样可避免在不同金属外壳或构架之间出现电位差,而这电位差往往是电磁干扰的诱发原因之一。

搭接类型分为直接搭接和间接搭接。

直接搭接可以利用螺栓等

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 初中作文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1