传感器原理及应用第3章电阻式传感器PPT文档格式.ppt

上传人:b****1 文档编号:14062814 上传时间:2022-10-17 格式:PPT 页数:111 大小:2.35MB
下载 相关 举报
传感器原理及应用第3章电阻式传感器PPT文档格式.ppt_第1页
第1页 / 共111页
传感器原理及应用第3章电阻式传感器PPT文档格式.ppt_第2页
第2页 / 共111页
传感器原理及应用第3章电阻式传感器PPT文档格式.ppt_第3页
第3页 / 共111页
传感器原理及应用第3章电阻式传感器PPT文档格式.ppt_第4页
第4页 / 共111页
传感器原理及应用第3章电阻式传感器PPT文档格式.ppt_第5页
第5页 / 共111页
点击查看更多>>
下载资源
资源描述

传感器原理及应用第3章电阻式传感器PPT文档格式.ppt

《传感器原理及应用第3章电阻式传感器PPT文档格式.ppt》由会员分享,可在线阅读,更多相关《传感器原理及应用第3章电阻式传感器PPT文档格式.ppt(111页珍藏版)》请在冰豆网上搜索。

传感器原理及应用第3章电阻式传感器PPT文档格式.ppt

在应变极限范围内,金属材料电阻的相对变化量与应变成正比,即,(3.5),3.1.2金属电阻应变片1.应变片的结构及测量原理金属电阻应变片简称应变片,其结构大体相同,如图3.2所示。

金属电阻应变片由基底、敏感栅、覆盖层和引线等部分组成。

图3.2金属电阻应变片的结构,2.应变片的种类应变片按照敏感栅材料形状和制造工艺的不同,可分为丝绕式、短接式、箔式和薄膜式等多种类型。

1)丝绕式应变片丝绕式应变片的结构如图3.2所示。

2)短接式应变片短接式应变片的结构如图3.3(a)所示。

敏感栅也由康铜等高阻值的金属电阻丝制成,敏感栅各直线段间的横接线采用面积较大的铜导线,其电阻值很小,因而可减小横向效应。

但是由于敏感栅上焊点较多,因而耐疲劳性能较差,不适于长期的动应力测量。

3)箔式应变片箔式应变片的结构如图3.3(b)所示。

敏感栅由很薄的康铜、镍铬合金等金属箔片通过光刻、腐蚀等工艺制成,厚度为0.0030.01mm,栅长可作到0.2mm,其优点如下:

(1)制造技术能保证敏感栅尺寸准确、线条均匀、可制成各种形状(亦称应变花),适用于各种弹性敏感元件上的应力分布测量。

图3.3(c)和3.3(d)分别为用于扭矩和流体压力测量的箔式应变片;

(2)敏感栅薄而宽,与被测试件粘贴面积大,粘结牢靠,传递试件应变性能好;

(3)散热条件好,允许通过较大的工作电流,从而提高了输出灵敏度;

(4)横向效应小。

图3.3金属电阻应变片的种类,4)薄膜式应变片薄膜式应变片是利用真空蒸镀、沉积或溅射等方法在绝缘基底上制成各种形状的薄膜敏感栅,膜厚小于1m。

这种应变片的优点是应变灵敏系数大,允许电流密度大,可以在197317温度下工作。

3.应变片的材料1)敏感栅材料的性能要求

(1)应变灵敏系数较大,且在所测应变范围内保持常数;

(2)电阻率高而稳定,便于制造小栅长的应变片;

(3)电阻温度系数较小,重复性好;

(4)机械强度高,碾压及焊接性能好,与其他金属之间的接触电势小;

(5)抗氧化,耐腐蚀性能强,无明显机械滞后。

2)基底和覆盖层基底和覆盖层的作用是保持敏感栅和引线的几何形状和相对位置,并且有绝缘作用。

一般是厚度为0.020.05mm的环氧树脂、酚醛树脂等胶基材料,要求机械强度好、挠性好、粘贴性能好、电绝缘性好、热稳定性和高温性好、无滞后和蠕变等。

3)引线引线一般采用直径为0.050.1mm的银铜线、铬镍线、铁铅丝等,与敏感栅点焊焊接。

4.应变片的粘贴用应变片测量应力或应变时,必须将应变片利用粘结剂粘贴到被测试件或弹性元件上,粘结剂形成的胶层必须可靠地将被测试件产生的应变传递到应变片的敏感栅上。

选择的粘结剂必须适合应变片材料和被测试件材料及环境,例如工作温度、湿度、化学腐蚀等。

不仅要求有一定的粘结强度能准确传递应变,而且粘合层要有足够的剪切弹性模量,蠕变、机械滞后小,有良好的电绝缘性能,耐湿、耐油、耐老化、耐疲劳等。

常用的粘结剂有硝化纤维素型、氰基丙烯酸脂型、环氧树脂型等。

粘贴工艺包括应变片的质量检查和阻值检查、试件表面处理、定位划线、粘贴应变片、干燥固化、引线焊接、固定以及防护与屏蔽处理等。

粘结剂的性能和应变片的粘贴质量直接影响应变片的工作特性,如零漂、蠕变、滞后、灵敏系数等。

因此,选择合适的粘结剂和采用正确的粘结工艺对保证应变片的测量精度有着重要的关系。

5.应变片的工作特性及参数1)灵敏系数将图3.4所示的应变片粘贴在试件表面上,使应变片的主轴线方向与试件轴线方向一致,当试件轴线上受到一维应力作用时,则应变片的电阻变化率R/R与试件主应力方向的应变x之比,称为应变片的灵敏系数S,即,(3.6),应变片的灵敏系数S具有以下特点:

(1)应变片的灵敏系数S是按一维应力定义的,但实验时是在二维应变场中(在应变片使用面积内,当产生纵向应变x时,必然产生横向应变y)测得的S值,所以必须规定试件的泊松比,以确定横向应变的影响。

一般选取=0.285的钢试件来确定S值;

(2)由于应变片粘贴到试件上就不能取下再用,因而不可能对每一个应变片都进行标定,只能在每批产品中提取一定百分比(如5%)的样品进行标定,而后取其平均值作为这一批产品的灵敏系数,工程上称为“标称灵敏系数”;

(3)用同一根电阻丝先测定其S0,而后制成如图3.4(a)所示的应变片,再按规定条件测定S值。

实验证明,被测应变在很大范围内,S与S0均能保持常数,但S恒小于S0。

其原因有二:

其一,试件与应变片之间的粘结剂传递变形失真;

其二,在实际测量过程中,应变片存在横向效应,而后者属原理性误差。

图3.4应变片轴向受力及横向效应,2)横向效应由于应变片的敏感栅是由多条直线段和圆弧段组成,若该应变片受轴向应力而产生纵向拉应变x时,则各直线段的电阻将增加。

但在圆弧段,如图3.4(b)所示,除产生纵向拉应变x外,还有垂直方向的横向压应变y=x,沿各微段轴向(即微段圆弧的切向)的应变在x和y之间变化。

在圆弧段两端的起、终微段,即=0和=180处,承受+x应变;

而在=90的微段处,则承受y=x应变。

因此,将金属电阻丝绕成敏感栅后,虽然长度不变,应变状态相同,但应变片敏感栅的灵敏系数S比电阻丝的灵敏系数S0低,这种现象称为应变片的横向效应。

3)零漂和蠕变粘贴在试件上的应变片,温度保持恒定,在试件不受力(即无机械应变)的情况下,其电阻值随时间变化的特性称为应变片的零漂。

如果应变片承受恒定机械应变(1000内)长时间作用,则其指示应变随时间变化的特性称为应变片的蠕变。

蠕变包含零漂,因为零漂是不加载的情况,是加载特性的特例。

应变片在制造过程中所产生的内应力、丝材、粘结剂、基底等变化是造成应变片零漂和蠕变的因素。

4)机械滞后应变片粘贴在试件上,应变片的指示应变i与试件的机械应变j之间应该是一确定的关系。

但在实际应用时,在加载和卸载过程中,对于同一机械应变k,应变片卸载时的指示应变高于加载时的指示应变,这种现象称为应变片的机械滞后,如图3.5所示。

其最大差值i称为应变片的机械滞后量。

机械滞后产生的原因主要是敏感栅、基底和粘结剂在承受机械应变j后的残余变形。

图3.5机械滞后,5)应变极限对于已粘贴好的应变片,其应变极限是指在一定温度下,指示应变i与受力试件真实应变j的相对误差达到规定值(一般为10%)时的真实应变k,如图3.6所示。

6)绝缘电阻绝缘电阻是指已粘贴的应变片引线与被测试件之间的电阻值。

通常要求50100M左右。

绝缘电阻过低,会造成应变片与试件之间漏电而产生测量误差。

应变片绝缘电阻取决于粘结剂及基底材料的种类以及它们的固化工艺。

基底与胶层愈厚,绝缘电阻愈大,但会使应变片的灵敏系数减小,蠕变和滞后增加,因此基底与胶层不可太厚。

图3.6应变极限,7)允许工作电流应变片的允许工作电流又称为最大工作电流,是指允许通过应变片而不影响其工作特性的最大电流值。

允许工作电流的选取原则为:

静态测量时约取25mA左右,动态测量时可高一些,箔式应变片更大些;

对于易导热的被测构件材料,也可选得大一些。

对于不易导热的材料,如塑料、玻璃、陶瓷等要取得小些。

8)电阻值应变片电阻值是指应变片没有粘贴、也不受外力作用时,在室温条件下测定的原始电阻值R0。

目前已标准化的系列有60、120、350、600、1000等各种规格,最常用的是120。

电阻值越大,应变片承受的电压就大,输出信号也越大,但敏感栅的尺寸相应地也会增大。

3.1.3应变片的动态特性假设试件内的应变波为阶跃变化,如图3.7(a)所示。

由于只有在应变波通过敏感栅全部长度后,应变片所反映的波形才能达到最大值,即应变片所反映的应变波有一定的时间延迟。

应变片的理论响应特性如图3.7(b)所示,而实际波形如图3.7(c)所示。

由图可以看出上升时间tr(应变输出从10%上升到90%的最大值所需时间)可表示为,(3.7),图3.7应变片对阶跃变化的响应特性,假设受力试件内的应变波按正弦规律变化,即=msin(2x/),由于应变片反映的应变波是应变片敏感栅各相应点应变量的平均值,因此应变波幅值将低于真实应变波,从而带来一定的误差。

显然,这种误差将随应变片基长的增加而增加,图3.8(a)表示应变波与应变片轴向的响应特性。

设应变波的波长为,应变片两端点的坐标为x1和x2,于是沿应变片基长l内测得的平均应变为,(3.8),把代入上式得应变波测量的相对误差为由式(3.9)可见,测量误差与应变波长对基长的比值n=/l有关,其关系曲线如图3.8(b)所示。

一般可取/l=1020,其误差范围为1.6%0.4%。

(3.9),图3.8应变波的响应特性与误差曲线,利用频率f、波长和波速v的关系=v/f和n=/l,可得应变波的频率与应变片基长的关系为,(3.10),3.1.4应变片的温度误差及其补偿1.温度误差在采用应变片进行应变测量时,由于测量现场环境温度的改变(偏离应变片标定温度),而给测量带来的附加误差,称为应变片的温度误差,又叫应变片的热输出。

应变片产生温度误差的主要原因如下:

1)敏感栅材料电阻温度系数的影响当环境温度变化t时,敏感栅材料电阻温度系数为t,则引起的电阻相对变化为,(3.11),2)试件材料和敏感栅材料线膨胀系数的影响当试件与敏感栅材料的线膨胀系数不同时,由于环境温度的变化,敏感栅会产生附加变形,从而产生附加电阻,引起的电阻相对变化为式中:

S应变片的灵敏系数;

1、2试件材料和敏感栅材料的线膨胀系数。

(3.12),因此由温度变化引起的总电阻相对变化为相应的热输出为2.温度补偿1)自补偿法利用应变片的敏感栅材料及制造工艺等措施,使应变片在一定的温度范围内满足t=S(12)(3.15),(3.14),(3.13),双金属敏感栅是实现温度自补偿的常用方法,即利用两段电阻温度系数相反的敏感栅Ra和Rb串联制成的复合型应变片,如图3.9(a)所示。

若两段敏感栅Ra和Rb由于温度变化而产生的电阻变化Rat和Rbt大小相同、符号相反,就可实现温度自补偿。

电阻Ra和Rb的比值可由下式确定,(3.16),若双金属敏感栅材料的电阻温度系数相同,则如图3.9(b)所示。

在两种材料Ra和Rb的连接处再焊接引线2,构成电桥的相邻臂如图3.9(c)所示。

图中Ra为工作臂,Rb与外接电阻RB组成补偿臂,适当调节Ra和Rb对应的长度比和外接电阻RB的数值,就可以使两桥臂由于温度引起的电阻变化相等或接近,实现温度自补偿,即由此可得,(3.17),图3.9自补偿法,2)电桥补偿法利用测量电桥的特点来进行温度补偿,是最常用且效果较好的补偿方法,如图3.10所示。

图3.10电桥补偿法,3.1.5测量电桥1.直流不平衡电桥的工作原理直流不平衡电桥采用直流电源供电,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 院校资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1