物理光学第二章答案Word下载.docx
《物理光学第二章答案Word下载.docx》由会员分享,可在线阅读,更多相关《物理光学第二章答案Word下载.docx(9页珍藏版)》请在冰豆网上搜索。
7、太阳对地球表面的张角约为0.0093rad,太阳光的平均波长为550nm,试计算地球表面的相干面积。
8、在平行平板干涉装置中,平板置于空气中,其折射率为1.5,观察望远镜的轴与平板垂直。
试计算从反射光方向和透射光方向观察到的条纹的可见度。
9、在平行平板干涉装置中,若照明光波的波长为600nm,平板的厚度为2mm,折射率为1.5,其下表面涂上高折射率(1.5)材料。
试问:
(1)在反射光方向观察到的干涉圆环条纹的中心是亮斑还是暗斑?
(2)由中心向外计算,第10个亮环的半径是多少?
(f=20cm)(3)第10个亮环处的条纹间距是多少?
10、检验平行平板厚度均匀性的装置中,D是用来限制平板受照面积的光阑。
当平板相对于光阑水平移动时,通过望远镜T可观察平板不同部分产生的条纹。
(1)平板由A处移动到B处,观察到有10个暗环向中心收缩并一一消失,试决定A处到B处对应的平板厚度差。
(2)所用光源的光谱宽度为0.05nm,平均波长为500nm,问只能检测多厚的平板?
(平板折射率1.5)
11、楔形薄层的干涉条纹可用来检验机械工厂里作为长度标准的端规。
如图,G1是待测规,G2是同一长度的标准规,T是放在两规之上的透明玻璃板。
假设在波长λ=550nm的单色光垂直照射下,玻璃板和端规之间的楔形空气层产生间距为1.5mm的条纹,两端规之间的距离为50mm,问两端规的长度差。
12、在玻璃平板B上放一标准平板A,如图,并将一端垫一小片,使A和B之间形成楔形空气层。
求:
(1)若B表面有一个半圆形凹槽,凹槽方向与A,B交线垂直,问在单色光垂直照射下看到的条纹形状如何?
(2)若单色光波长为632.8nm,条纹的最大弯曲量为条纹间距的2/5,问凹槽的深度是多少?
13、在一块平面玻璃板上,放置一曲率半径为R的平凹透镜,用平行光垂直照射,如图,形成牛顿环条纹,求:
(1)证明条纹间距e公式:
,(N是由中心向外计算的条纹数,λ是单色光波长;
(2)若分别测得相距k个条纹的两个环的半径为rN和rN+k,证明:
;
(3)比较牛顿环条纹和等倾圆条纹之间的异同。
14、在迈克耳逊干涉仪中,如果调节反射镜M2使其在半反射面中的虚像M2’和M1的反射镜平行,则可以通过望远镜观察到干涉仪产生的等倾条纹。
假设M1从一个位置平移到另外一个位置时,视场中的暗环从20个减少到18个,并且对于前后两个位置,视场中心都是暗点;
已知入射光波波长500nm,望远镜物镜视场角为10o,试计算M1平移的距离。
15、在法布里——珀罗干涉仪中镀金属膜的两玻璃板内表面的反射系数为0.8944,试求:
(1)条纹的位相半宽度;
(2)条纹的精细度。
16、已知贡绿线的超精细结构为546.0753nm,546.0745nm,546.0734nm,546.0728nm,他们分别属于贡的同位素Hg100,Hg200,Hg202,Hg204。
问用法布里——珀罗标准具分析这一结构时如何选取标准具的间距?
(设标准具版面的反射率R=0.9)。
1.解:
1)根据公式
2)
2.解:
由题意知:
0级条纹移到了0.5cm处。
∴此时这一位置处两相干光光程差变为0
两相干光光程差的表示式为:
∴h=
3.解:
设顶角为α,由条纹间距公式,顶角为:
4.解:
(1)只有在两相干光相交的区域内才可能会有干涉条纹。
由平面镜成像及反射定律可作出反射光线和光源发出的光线的相交区域,由于满足相干条件,所以,此区域就是能看到条纹的区域。
由几何关系:
∴区域宽度为:
(2)条纹间距:
暗纹数:
n=
5.解:
当玻璃片引入的光程差等于相干长度的时候p′处干涉条纹消失:
10
6.解:
双面镜干涉装置中光源的临界宽度b和干涉孔径角的关系为,光源的临界宽度:
光源的许可宽度为
7.解:
圆形光源对应的空间相干度dt=1.22,其相干面积:
A==
=0.00408mm2
8.解在接近正入射的情况下,两反射光束的强度分别为I1’=0.04I0和I2’=0.037I0,两透射光束的强度分别为I1’’=0.922I0和I2’’=0.015I0,其中I0为入射光的强度。
根据两光束干涉到强度公式
强度极大值和极小值分别为
因而干涉条纹的可见度
对于反射光条纹
对于透射光条纹
可见反射光条纹的可见度比透射光条纹好得多,所以在平板反射率很低的情况下,我们总是利用平板的反射光条纹。
9.解:
(1)反射光条纹中心亮纹。
上下表面同时有半波损失,总体相当于没有损失。
光程差
干涉级数是所以环中心为亮斑。
(2)条纹角半径即光线入射角θ1
光程差Δ=2h=Nλ
即≈=0.067
(3)条纹角间距
条纹间距:
10.解
(1)由平板干涉到光程差公式
对于中心条纹,θ2=0故并且
当dm=10时,平板的厚度变化为
(2)光源的相干长度为
因此平板干涉到光程差必须小于5mm,
即2nh<
5mm,故只可检验的
平板厚度为h<
=1.667mm
11.解空气层的楔角为
两规的长度之差为(R是两规之间的距离)
则
12.解:
①按如图装置放好玻璃板和金属丝,用读数显微镜测条纹间距e=
∴=
再测出距离L(棱镜到金属丝与B板切点间距)
可得金属丝直径D=L=
②平行于棱的直条纹中间发生弯曲,由于是凹下去,相当于h增大,
∴向h小的方向弯曲。
③凹陷厚度即凹槽深度:
h=
13.解
(1)透镜凸表面和玻璃板平面间的空气层中心O的厚度为零,可知牛顿环中心为一暗斑。
设由中心向外计算,第N个暗环的半径为
由于R>
>
h,上式可写为
又由于N个条纹对应的空气层厚度差为
所以有
取上式微分,有注意到时,,
所以
(2)由
(1)的结果和有因此
(3)两种条纹之间的相同点:
1)两种条纹均是一些同心圆环;
2)条纹间距随着离开环中心距离的增大而减小,即中心条纹疏,边缘条纹密。
两种条纹的区别在于:
1)牛顿环条纹的中心总是暗斑①,而等倾圆条纹的中心是亮或是暗,要由它对应的干涉级数来决定;
2)牛顿环条纹的干涉级数由中心向外增大,等倾圆条纹的干涉级数由中心外减小,圆心的干涉级数最高。
14.解:
因为视场中条纹的数目减少,亦即是条纹间距增大,根据等倾圆条纹的性质,可以断定虚平板的厚度是在减小。
在第一位置时,按题意第20个暗环的角半径等于望远镜物镜的半视场角,因而这时的虚平板厚度为:
类似地,在第二位置时,虚平板的厚度为
因此移动的距离为:
15.解:
⑴位相差半宽度
⑵精细度:
S=
16.解:
用法布里—珀罗标准具分析这一结构时,应选取标准具的间距使标准具的光谱范围大于超精细结构的最大波长差,并且使标准具的分辨极限小于超精细结构的最小波长差。
标准具的自由光谱范围
而根据题给条件
超精细结构的最大波长差
因此,欲使
必须选取
标准具的分辨本领
因而标准具的分辨极限
它必须小于超精细结构的最小波长差:
即
因此
所以,标准具的间距应满足如下条件: