江苏省常州市中考数学试题含答案解析Word下载.docx
《江苏省常州市中考数学试题含答案解析Word下载.docx》由会员分享,可在线阅读,更多相关《江苏省常州市中考数学试题含答案解析Word下载.docx(28页珍藏版)》请在冰豆网上搜索。
B.三个角是直角的四边形是矩形
C.四边相等的四边形是菱形
D.有一个角是直角的菱形是正方形
6.(2.00分)已知a为整数,且,则a等于( )
A.1B.2C.3D.4
7.(2.00分)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°
,则∠NOA的度数为( )
A.76°
B.56°
C.54°
D.52°
8.(2.00分)某数学研究性学习小组制作了如下的三角函数计算图尺:
在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是( )
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)
9.(2.00分)计算:
|﹣3|﹣1= .
10.(2.00分)化简:
= .
11.(2.00分)分解因式:
3x2﹣6x+3= .
12.(2.00分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是 .
13.(2.00分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为 km.
14.(2.00分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是 .
15.(2.00分)如图,在▱ABCD中,∠A=70°
,DC=DB,则∠CDB= .
16.(2.00分)如图,△ABC是⊙O的内接三角形,∠BAC=60°
,的长是,则⊙O的半径是 .
17.(2.00分)下面是按一定规律排列的代数式:
a2,3a4,5a6,7a8,…则第8个代数式是 .
18.(2.00分)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是 .
三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)
19.(6.00分)计算:
|﹣1|﹣﹣(1﹣)0+4sin30°
.
20.(8.00分)解方程组和不等式组:
(1)
(2)
21.(8.00分)如图,把△ABC沿BC翻折得△DBC.
(1)连接AD,则BC与AD的位置关系是 .
(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.
22.(8.00分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.
根据统计图提供的信息,解答下列问题:
(1)本次抽样调查的样本容量是 ;
(2)补全条形统计图;
(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.
23.(8.00分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.
(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;
(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).
24.(8.00分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.
(1)求点A的坐标;
(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.
25.(8.00分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°
,∠DBA=60°
,求该段运河的河宽(即CH的长).
26.(10.00分)阅读材料:
各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;
类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.
(1)问题:
方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:
用“转化”思想求方程=x的解;
(3)应用:
如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
27.(10.00分)
(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:
∠AFE=∠CFD.
(2)如图2,在Rt△GMN中,∠M=90°
,P为MN的中点.
①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);
②在①的条件下,如果∠G=60°
,那么Q是GN的中点吗?
为什么?
28.(10.00分)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).
(1)b= ,点B的坐标是 ;
(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:
MB=1:
2?
若存在求出点P的横坐标;
若不存在,请说明理由;
(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.
参考答案与试题解析
【分析】根据倒数的定义可得﹣3的倒数是﹣.
【解答】解:
﹣3的倒数是﹣.
故选:
C.
【点评】主要考查倒数的概念及性质.倒数的定义:
若两个数的乘积是1,我们就称这两个数互为倒数.
【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱.
∵苹果每千克m元,
∴2千克苹果2m元,
D.
【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.
【分析】根据圆锥的侧面展开图的特点作答.
圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.
B.
【点评】此题考查了几何体的展开图,注意圆锥的侧面展开图是扇形.
【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(2,﹣1)代入求出k的值即可.
设该正比例函数的解析式为y=kx(k≠0),
∵正比例函数的图象经过点(2,﹣1),
∴2=﹣k,解得k=﹣2,
∴这个正比例函数的表达式是y=﹣2x.
A.
【点评】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.
【分析】根据矩形、正方形、平行四边形、菱形的判定即可求出答案.
A、一组对边平行且相等的四边形是平行四边形,是假命题;
B、三个角是直角的四边形是矩形,是真命题;
C、四边相等的四边形是菱形,是真命题;
D、有一个角是直角的菱形是正方形,是真命题;
【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别,关键是根据矩形、正方形、平行四边形、菱形的判定解答.
【分析】直接利用,接近的整数是2,进而得出答案.
∵a为整数,且,
∴a=2.
【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.
【分析】先利用切线的性质得∠ONM=90°
,则可计算出∠ONB=38°
,再利用等腰三角形的性质得到∠B=∠ONB=38°
,然后根据圆周角定理得∠NOA的度数.
∵MN是⊙O的切线,
∴ON⊥NM,
∴∠ONM=90°
,
∴∠ONB=90°
﹣∠MNB=90°
﹣52°
=38°
∵ON=OB,
∴∠B=∠ONB=38°
∴∠NOA=2∠B=76°
【点评】本题考查了切线的性质:
圆的切线垂直于经过切点的半径.也考查了圆周角定理.
【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;
如图,连接AD.
∵OD是直径,
∴∠OAD=90°
∵∠AOB+∠AOD=90°
,∠AOD+∠ADO=90°
∴∠AOB=∠ADO,
∴sin∠AOB=sin∠ADO==,
【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.