中考数学二次函数与abc的关系doc文档格式.docx

上传人:b****2 文档编号:13670455 上传时间:2022-10-12 格式:DOCX 页数:20 大小:24.42KB
下载 相关 举报
中考数学二次函数与abc的关系doc文档格式.docx_第1页
第1页 / 共20页
中考数学二次函数与abc的关系doc文档格式.docx_第2页
第2页 / 共20页
中考数学二次函数与abc的关系doc文档格式.docx_第3页
第3页 / 共20页
中考数学二次函数与abc的关系doc文档格式.docx_第4页
第4页 / 共20页
中考数学二次函数与abc的关系doc文档格式.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

中考数学二次函数与abc的关系doc文档格式.docx

《中考数学二次函数与abc的关系doc文档格式.docx》由会员分享,可在线阅读,更多相关《中考数学二次函数与abc的关系doc文档格式.docx(20页珍藏版)》请在冰豆网上搜索。

中考数学二次函数与abc的关系doc文档格式.docx

当x=-1时,y=.

二次函数的图象与性质具体如下图所示:

yyyyy

ox

ox

ooxx

xo

a0、b0a0、b0a0、b0a0、b0a0、b0a0、b0

c0、abc0c0、abc0c0、abc0c0、abc0c0、abc0c0、abc0

b

2-4ac0b2-4ac0b2-4ac0b2-4ac0b2-4ac0b2-4ac0

巩固练习:

1、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列

2+bx+c(a≠0)的图象如图所示,则下列

yx=1

4个结论中:

①abc>

0;

②b<

a+c;

③4a+2b+c>

④b

2-4ac>

⑤b=2a.正确的是(填序号)

-10x

1

2、根据图象填空,:

(1)a0,b0,c0,abc0.

2-4ac0

(2)b

(3)abc0;

abc0;

(4)当x0时,y的取值范围是;

21O1x

当y0时,x的取值范围是.

2的顶点在第二象限,交于y轴的正半轴,与x轴有两个交点,

3.若一条抛物线yaxbxc

则下列结论正确的是().

A.a﹥0,bc﹥0;

B.a﹤0,bc﹤0;

C.a﹤0,bc﹥0;

D.a﹥0,bc﹤0

4.已知二次函数y=ax

2+bx+c的图象如图所示,那么下列判断不正确的是

()

A、ac<0B、a-b+c>0C、b=-4a

D、关于x的方程ax

2+bx+c=0的根是x1=-1,x2=5

5、已知二次函数y=ax

2+bx+c(a≠0)的图象如图所示,有下列结论:

2-4ac>0;

②abc>0③8a+c>0;

④9a+3b+c<0

①b

其中,正确结论的个数是()

A、1B、2C、3D、4

6.已知反比例函数

k

y的图象在二、四象限,则二次函数

x

22

y2kxxk的图象大致为()

yy

y

Ox

OxOxOx

A.B.C.D.

7.(2014?

威海)已知二次函数y=ax

2+bx+c(a≠0)的图象如图,

则下列说法:

①c=0;

②该抛物线的对称轴是直线x=﹣1;

③当x=1时,y=2a;

④am

2+bm+a>0(m≠﹣1).

其中正确的个数是()

8.(2014?

仙游县二模)已知二次函数y=ax+bx+c(a≠0)的图象如图所示,给出以下结论:

①a+b+c<0;

②a﹣b+c<0;

③b+2a<0;

④abc>0.其中所有正确结论的序号是()A.③④B.②③

C.①④D.①②③

9.(2014?

南阳二模)二次函数y=ax

+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:

﹣4ac>0;

④<0中,正确的结论有()

①a<0;

②c>0;

③b

10.(2014?

襄城区模拟)函数y=x+bx+c与y=x的图象如图,有以下结论:

﹣4c<0;

②c﹣b+1=0;

③3b+c+6=0;

④当1<x<3时,x

①b+(b﹣1)x+c<0.

其中正确结论的个数为()

A.1B.2C.3D.4

11.(2014?

宜城市模拟)如图是二次函数y=ax

下列说法:

+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)

①abc<0;

②2a﹣b=0;

③4a+2b+c<0;

④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.

其中说法正确的是()

A.①②B.②③C.②③④D.①②④

12.(2014?

莆田质检)如图,二次函数y=x+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的

右侧,则m的取值范围是()

A.m>2B.m<3C.m>3D.2<m<3

13.(2014?

玉林一模)如图是二次函数y=ax

+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=

﹣1.给出四个结论:

>4ac;

②2a+b=0;

③3a+c=0;

④a+b+c=0.

①b

其中正确结论的个数是()

A.1个B.2个C.3个D.4个

3

14.(2014?

乐山市中区模拟)如图,抛物线y=ax+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),

y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:

①当x>3时,y<0;

②3a+b>0;

③﹣

1≤a≤﹣;

④≤n≤4.其中正确的是()

A.①②B.③④C.①③D.①③④

15.(2014?

齐齐哈尔二模)已知二次函数y=ax

+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),

且1<x1<2,下列结论正确的个数为()①b<0;

②c<0;

③a+c<0;

④4a﹣2b+c>0.

16.(2014年四川南充)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:

①abc>0;

②2a+b=0;

2;

④a﹣b+c>0;

⑤若

当m≠1时,a+b>ambm

ax1bx=ax2bx2,且x1x2则x1x2=2.

其中正确的有()A.①②③B.②④C.②⑤D.②③⑤

17.二次函数

yxbx的图象如图,对称轴为直线x=2.若关于x的一元二次方程

xbxt0(t为实数)

在-1<x<1的范围内有解,则t的取值范围是()

A.t≥-1B.-4≤t<5

C.-1≤t<1D.-3<t<5

18.(14年泰安)二次函数y=ax+bx+c(a、b、c为常数,且a≠0)中的x与y的部分对应值如下表:

x-1013

y-1353

下列结论:

(1)ac<0;

(2)当x>1时,y的值随x值的增大而减小.

(3)3是方程

210

axbxc的一个根;

210(4)当﹣1<x<3时,axbxc.

其中正确的个数为()A.4个B.3个C.2个D.1个

4

1.(2014?

威海)已知二次函数y=ax+bx+c(a≠0)的图象如图,则下列说法:

①c=0;

②该抛物线的对称轴是直线x=﹣1;

③当x=1时,y=2a;

④am+bm+a>0(m≠﹣1).

考点:

二次函数图象与系数的关系.

分析:

由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进

而对所得结论进行判断.

解答:

解:

抛物线与y轴交于原点,

c=0,(故①正确);

该抛物线的对称轴是:

直线x=﹣1,(故②正确);

当x=1时,y=a+b+c

∵对称轴是直线x=﹣1,

∴﹣b/2a=﹣1,b=2a,

又∵c=0,

∴y=3a,(故③错误);

x=m对应的函数值为y=am

+bm+c,

x=﹣1对应的函数值为y=a﹣b+c,

又∵x=﹣1时函数取得最小值,

∴a﹣b+c<am

+bm+c,即a﹣b<am+bm,

∵b=2a,

∴am

+bm+a>0(m≠﹣1).(故④正确).

故选:

C.

点评:

本题考查了二次函数图象与系数的关系.二次函数y=ax

+bx+c(a≠0)系数符号由抛物线开口方向、

对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.

2.(2014?

④abc>0.其中所有正确结论的序号是()

A.③④B.②③C.①④D.①②③

专题:

数形结合.

由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物

线与x轴交点情况进行推理,进而对所得结论进行判断.

①当x=1时,y=a+b+c=0,故①错误;

②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,

∴y=a﹣b+c<0,

故②正确;

③由抛物线的开口向下知a<0,

∵对称轴为0<x=﹣<1,

∴2a+b<0,

5

故③正确;

④对称轴为x=﹣>0,a<0

∴a、b异号,即b>0,

由图知抛物线与y轴交于正半轴,∴c>0

∴abc<0,

故④错误;

∴正确结论的序号为②③.

B.

二次函数y=ax

+bx+c系数符号的确定:

(1)a由抛物线开口方向确定:

开口方向向上,则a>0;

否则a<0;

(2)b由对称轴和a的符号确定:

由对称轴公式x=﹣判断符号;

(3)c由抛物线与y轴的交点确定:

交点在y轴正

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1