高三数学一轮复习 第21讲 不等式解法及应用教案Word文件下载.docx
《高三数学一轮复习 第21讲 不等式解法及应用教案Word文件下载.docx》由会员分享,可在线阅读,更多相关《高三数学一轮复习 第21讲 不等式解法及应用教案Word文件下载.docx(29页珍藏版)》请在冰豆网上搜索。
1.不等式的解法
解不等式是求定义域、值域、参数的取值范围时的重要手段,与“等式变形”并列的“不等式的变形”,是研究数学的基本手段之一。
高考试题中,对解不等式有较高的要求,近两年不等式知识占相当大的比例。
(1)同解不等式(
(1)与同解;
(2)与同解,与同解;
(3)与同解);
2.一元一次不等式
解一元一次不等式(组)及一元二次不等式(组)是解其他各类不等式的基础,必须熟练掌握,灵活应用。
情况分别解之。
3.一元二次不等式
或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。
4.分式不等式
分式不等式的等价变形:
>
0f(x)·
g(x)>
0,≥0。
5.简单的绝对值不等式
绝对值不等式适用范围较广,向量、复数的模、距离、极限的定义等都涉及到绝对值不等式。
高考试题中,对绝对值不等式从多方面考查。
解绝对值不等式的常用方法:
①讨论法:
讨论绝对值中的式于大于零还是小于零,然后去掉绝对值符号,转化为一般不等式;
②等价变形:
解绝对值不等式常用以下等价变形:
|x|<
ax2<
a2-a<
x<
a(a>
0),
|x|>
ax2>
a2x>
a或x<
-a(a>
0)。
一般地有:
|f(x)|<
g(x)-g(x)<
f(x)<
g(x),
|f(x)|>
g(x)f(x)>
g(x)或f(x)<
g(x)。
6.指数不等式
;
;
7.对数不等式
等,
(1)当时,;
(2)当时,。
8.线性规划
(1)平面区域
一般地,二元一次不等式在平面直角坐标系中表示某一侧所有点组成的平面区域。
我们把直线画成虚线以表示区域不包括边界直线。
当我们在坐标系中画不等式所表示的平面区域时,此区域应包括边界直线,则把直线画成实线。
说明:
由于直线同侧的所有点的坐标代入,得到实数符号都相同,所以只需在直线某一侧取一个特殊点,从的正负即可判断表示直线哪一侧的平面区域。
特别地,当时,通常把原点作为此特殊点。
(2)有关概念
引例:
设,式中变量满足条件,求的最大值和最小值。
由题意,变量所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域。
由图知,原点不在公共区域内,当时,,即点在直线:
上,作一组平行于的直线:
,,可知:
当在的右上方时,直线上的点满足,即,而且,直线往右平移时,随之增大。
由图象可知,当直线经过点时,对应的最大,
当直线经过点时,对应的最小,所以,,。
在上述引例中,不等式组是一组对变量的约束条件,这组约束条件都是关于的一次不等式,所以又称为线性约束条件。
是要求最大值或最小值所涉及的变量的解析式,叫目标函数。
又由于是的一次解析式,所以又叫线性目标函数。
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。
在上述问题中,可行域就是阴影部分表示的三角形区域。
其中可行解和分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。
典例解析
题型1:
简单不等式的求解问题
例1.不等式组的解集是()
A.{x|-1<x<1B.{x|0<x<3
C.{x|0<x<1D.{x|-1<x<3
答案:
C
解析:
原不等式等价于:
0<x<1。
点评:
一元二次不等式的求解问题是高中数学的基础性知识,是解决其它问题的基础。
例2.不等式>
0的解集为()
A.{x|x<
1}B.{x|x>
3}
C.{x|x<
1或x>
3}D.{x|1<
由已知(x-1)(x-3)>
0,
∴x<
3.
故原不等式的解集为{x|x<
3}。
简单的分式不等式的解法是高中数学中常用到的求范围问题工具,分式不等式的解题思路是:
分式化整式(注意分母不为零)。
题型2:
简单的绝对值、涉及指数、对数和三角的不等式的求解问题
例3.
(1)不等式(1+x)(1-|x|)>0的解集是()
A.{x|0≤x<1B.{x|x<0且x≠-1
C.{x|-1<x<1D.{x|x<1且x≠-1
(2)不等式组的解集是()
A.{x|0<x<2B.{x|0<x<2.5
C.{x|0<x<D.{x|0<x<3
(1)答案:
D;
解法一:
①x≥0时,原不等式化为:
(1+x)(1-x)>0,
∴(x+1)(x-1)<0,
∴0≤x<1。
②x<0时,原不等式化为:
(1+x)(1+x)>0(1+x)2>0,
∴x≠-1,
∴x<0且x≠-1。
综上,不等式的解集为x<1且x≠-1。
解法二:
原不等式化为:
①或②
①解得-1<x<1,
②解得即x<-1,
∴原不等式的解集为x<1且x≠-1。
该题体现了对讨论不等式与不等式组的转化及去绝对值的基本方法的要求。
(2)答案:
当x≥2时,原不等式化为,
去分母得(x+2)(3-x)>(x+3)(x-2),
即-x2+x+6>x2+x-6,2x2-12<0,。
注意x≥2,得2≤x<;
当0<x<2时,原不等式化为,去分母得-x2+x+6>-x2-x+6。
即2x>0注意0<x<2,得0<x<2。
综上得0<x<,所以选C。
特殊值法.取x=2,适合不等式,排除A;
取x=2.5,不适合不等式,排除D;
再取x=,不适合不等式,所以排除B;
选C。
此题考查不等式的解法、直觉思维能力、估算能力。
例4.
(1)不等式()>3-2x的解集是_____。
(2)在(0,2π)内,使sinx>cosx成立的x取值范围为()
A.(,)∪(π,)B.(,π)
C.(,)D.(,π)∪(,)
(3)设f(x)=则不等式f(x)>
2的解集为()
(A)(1,2)(3,+∞)(B)(,+∞)
(C)(1,2)(,+∞)(D)(1,2)
{x|-2<x<4}
将不等式变形得
则-x2+8>-2x,从而x2-2x-8<0,(x+2)(x-4)<0,-2<x<4,所以不等式的解集是{x|-2<x<4}.
评述:
此题考查指数不等式的解法;
作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标和,由图4—6可得C答案。
图4—6图4—7
在单位圆上作出一、三象限的对角线,由正弦线、余弦线知应选C.(如图4—7)。
(3)C;
特殊不等式的求解,转化是一方面,借助于函数的性质和图象也是解决问题的有效手段。
题型3:
含参数的不等式的求解问题
例5.
(1)设不等式x2-2ax+a+2≤0的解集为M,如果M[1,4],求实数a的取值范围?
(2)解关于x的不等式>1(a≠1)。
分析:
该题实质上是二次函数的区间根问题,充分考虑二次方程、二次不等式、二次函数之间的内在联系是关键所在;
数形结合的思想使题目更加明朗。
(1)M[1,4]有两种情况:
其一是M=,此时Δ<0;
其二是M≠,此时Δ=0或Δ>0,分三种情况计算a的取值范围。
设f(x)=x2-2ax+a+2,有Δ=(-2a)2-(4a+2)=4(a2-a-2)
当Δ<0时,-1<a<2,M=[1,4];
当Δ=0时,a=-1或2;
当a=-1时M={-1}[1,4];
当a=2时,m={2}[1,4]。
当Δ>0时,a<-1或a>2。
设方程f(x)=0的两根x1,x2,且x1<x2,
那么M=[x1,x2],M[1,4]1≤x1<x2≤4,
即,解得2<a<,
∴M[1,4]时,a的取值范围是(-1,)。
(2)原不等式可化为:
>0,
①当a>1时,原不等式与(x-)(x-2)>0同解。
由于,
∴原不等式的解为(-∞,)∪(2,+∞)。
②当a<1时,原不等式与(x-)(x-2)<0同解。
若a<0,,解集为(,2);
若a=0时,,解集为;
若0<a<1,,解集为(2,)。
综上所述:
当a>1时解集为(-∞,)∪(2,+∞);
当0<a<1时,解集为(2,);
当a=0时,解集为;
当a<0时,解集为(,2)。
考查二次不等式的解与系数的关系及集合与集合之间的关系。
本题主要涉及一元二次不等式根与系数的关系及集合与集合之间的关系,以及分类讨论的数学思想。
M=是符合题设条件的情况之一,出发点是集合之间的关系考虑是否全面,易遗漏;
构造关于a的不等式要全面、合理,易出错。
例6.
(1)设a>0,n1,函数f(x)=alg(x2-2n+1)有最大值.则不等式logn(x2-5x+7)>0的解集为_______;
(2)设,函数有最小值,则不等式的解集为。
(1)由于函数有最大值,则。
所以原不等式可转化为,又因为恒成立,由解得;
(2)由于函数有最小值,故。
原不等式化为,即。
含参数指数、对数不等式的处理原则是转化为一般的不等式,兼顾到底数的分类标准为两种情况,这也是分类的标准。
题型4:
线性规划问题
例7.
(1)如果实数满足条件,那么的最大值为()
A.B.C.D.
(2)设变量、满足约束条件,则目标函数的最小值为()
A. B. C. D.
(1)当直线过点(0,-1)时,最大,故选B;
(2)B.
近年来线性规划的一些基本运算问题成为出题的热点,该部分知识大多都属于基础题目,属于中低档题目。
例8.
(1)某厂生产甲产品每千克需用原料和原料分别为,生产乙产品每千克需用原料和原料分别为千克,甲、乙产品每千克可获利润分别为元,月初一次性够进本月用原料各千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大;
在这个问题中,设全月生产甲、乙两种产品分别为千克,千克,月利润总额为元,那么,用于求使总利润最大的数学模型中,约束条件为()
(A)(B)
(C)(D)
(2)在平面直角坐标系中,不等式组表示的平面区域的面积是()
(A)(B)(C)(D)
(3)已知点P(x,y)的坐标满足条