反三角函数及最简三角方程Word文档格式.docx

上传人:b****0 文档编号:13239279 上传时间:2022-10-08 格式:DOCX 页数:65 大小:447.42KB
下载 相关 举报
反三角函数及最简三角方程Word文档格式.docx_第1页
第1页 / 共65页
反三角函数及最简三角方程Word文档格式.docx_第2页
第2页 / 共65页
反三角函数及最简三角方程Word文档格式.docx_第3页
第3页 / 共65页
反三角函数及最简三角方程Word文档格式.docx_第4页
第4页 / 共65页
反三角函数及最简三角方程Word文档格式.docx_第5页
第5页 / 共65页
点击查看更多>>
下载资源
资源描述

反三角函数及最简三角方程Word文档格式.docx

《反三角函数及最简三角方程Word文档格式.docx》由会员分享,可在线阅读,更多相关《反三角函数及最简三角方程Word文档格式.docx(65页珍藏版)》请在冰豆网上搜索。

反三角函数及最简三角方程Word文档格式.docx

其中:

(1).符号arcsinx可以理解为[-

]上的一个角(弧度),也可以理解为区间[-

]上的一个实数;

同样符号arccosx可以理解为[0,π]上的一个角(弧度),也可以理解为区间[0,π]上的一个实数;

(2).y=arcsinx等价于siny=x,y∈[-

],y=arccosx等价于cosy=x,x∈[0,π],这两个等价关系是解反三角函数问题的主要依据;

(3).恒等式sin(arcsinx)=x,x∈[-1,1],cos(arccosx)=x,x∈[-1,1],tan(arctanx)=x,x∈R

arcsin(sinx)=x,x∈[-

],arccos(cosx)=x,x∈[0,π],arctan(tanx)=x,x∈(-

)的运用的条件;

(4).恒等式arcsinx+arccosx=

arctanx+arccotx=

的应用。

2、最简单的三角方程

方程

方程的解集

(1).含有未知数的三角函数的方程叫做三角方程。

解三角方程就是确定三角方程是否有解,如果有解,求出三角方程的解集;

(2).解最简单的三角方程是解简单的三角方程的基础,要在理解三角方程的基础上,熟练地写出最简单的三角方程的解;

(3).要熟悉同名三角函数相等时角度之间的关系在解三角方程中的作用;

如:

,则

(4).会用数形结合的思想和函数思想进行含有参数的三角方程的解的情况和讨论。

二、典型例题:

例1.

例6.求值:

(1)

(2)

分析:

问题的关键是能认清三角式的含义及运算次序,利用换元思想转化为三角求值。

 

例7.画出下列函数的图像

(1)

例8.已知

(用反三角函数表示)分析:

可求

的某一三角函数值,再根据

的范围,利用反三角函数表示角。

例9.已知函数

(1)求函数的定义域、值域和单调区间;

(2)解不等式:

例10.写出下列三角方程的解集

;

(3)

例11.求方程

上的解集.

例12.解方程

例13. 

解方程①

例14.解方程:

思考:

引入辅助角,化为最简单的三角方程

例15.解方程

例16.解方程:

例17.已知方程

在区间

上有且只有两个不同的解,求实数a的取值范围。

[说明]对于两个相等的同名三角函数所组成的三角方程,可直接利用以下关系得到方程的解.

(2)

(3)

三、同步练习:

反三角函数

1.

的值是()

A.

B.

C.

D.

2.下列关系式中正确的是()

A.

C.

3.函数

的定义域是()

B.

C.

4.在

上和函数

相同的函数是()

5.函数

的反函数是.

6.求

上的反函数.

7.比较

的大小.

8.研究函数

的定义域、值域及单调性.

9.计算:

10.求下列函数的定义域和值域:

(1)y=arccos

(2)y=arcsin(-x2+x);

(3)y=arccot(2x-1),

11.求函数y=(arccosx)2-3arccosx的最值及相应的x的值。

简单的三角方程

1.解下列方程.

2.方程sin2x=sinx在区间(0,2π)内的解的个数是.

3.

(1)方程tan3x=tgx的解集是.

(2)方程sinx+cosx=

在区间[0,4π]上的所有的解的和是.

4.解方程

参考答案:

典型例题:

例1.分析与解:

例2.分析与解:

例3.分析与解:

例4.分析与解:

该题研究不等关系,故需利用函数的单调性进行转化,又因为求x的取值范围,故需把x从反三角函数式中分离出来,为此只需对arcsinx,arccosx同时取某一三角函数即可,不妨选用正弦函数。

例5.分析与解:

这是三角函数的反三角运算,其方法是把角化到相应的反三角函数的值域内。

例6.解:

例7.

(1)函数是以

为周期的周期函数

时,

其图像是折线,如图所示:

(2)∵

其图像为单位圆的上半圆(包括端点)如图所示:

例8.解:

又∵

从而

讲评:

由题设

,得

由计算

,但

是确定的角,因而

的值也是唯一确定的。

所以必须确定

所在的象限,在以上的解法中,由

的范围,再根据

的值,进一步得到

从而确定

,故得出正确的答案:

例9.解:

(1)由

的定义域为

,值域为

单调递减,

单调递减,从而

递增

的单调递增区间是

,同理

的单调递减区间是

解不等式组得

∴不等式的解集为

例10.

解集{x|x=(kπ+arctg3)2,k∈Z}

例11.

说明 

如何求在指定区间上的解集?

(1)先求出通解,

(2)让k取适当的整数,一一求出在指定区间上的特解,(3)写指定区间上的解.

例12.解:

方程化为

可化为关于某一三角函数的二次方程,然后按二次方程解.

例13.

②除以cos2x化为2tg2x-3tgx-2=0.

关于sinx,cosx的齐次方程的解法:

方程两边都除cosnx(n=1,2,3,…)(∵cosx=0不是方程的解),转化为关于tgx的方程来解.

例14.思考:

2x-30°

=k180°

+(-1)k30°

∴x=k90°

+(-1)k15°

+15°

(k∈Z)所以解集是

{x|x=k90°

,k∈Z}

于是x=k60°

+(-1)k10°

+22°

38′,(k∈Z)

∴原方程的解集为{x|x=k60°

(-1)k10°

38′,k∈Z}

最简单的三角方程.

例15.解原方程可化为

解这个关于

的二次方程,得

,得解集为

所以原方程的解集为

[说明]方程中的

可化为

,这样原方程便可看成以

为未知数的一元二次方程,当

时,可用因式分解将原方程转化成两个最简方程,从而求得它们的解.

例16.解:

tg(x+

)+tg(x-

)=2ctgx………①∴

………②,

去分母整理得tg2x=

tgx=±

∴x=kπ±

k∈Z,

由①根据定义知x+

≠kπ+

x-

x≠kπ,k∈Z,

即x≠kπ+

x≠kπ+

x≠kπ,而②中又增加了限制条件x=kπ+

即从①到②有可能丢根,x=kπ+

经验算x=kπ+

是原方程的根,

∴原方程的解集是{x|x=x=kπ±

或x=kπ+

k∈Z}

例17.解:

由sinx+

cosx+a=0得2sin(x+

)=-a,sin(x+

)=-

-2≤a≤2

∵x∈[0,2π],∴x+

∈[

2π+

],

又原方程有且只有两个不同的解,∴a≠2,a≠-2,即|a|=2时,原方程只有一解;

又当a=-

时,sin(x+

)=

,得x+

解得x=0或x=

或x=2π,此时原方程有三个解,∴a∈(-2,-

)∪(-

2).

同步练习:

CCBB7.

10.解:

(1)y=arccos

0<

≤1,∴x≥1,y∈[0,

).

(2)y=arcsin(-x2+x),-1≤-x2+x≤1,∴

≤x≤

由于-x2+1=-(x-

)2+

∴-1≤-x2+x≤

∴-

≤y≤arcsin

(3)y=arccot(2x-1),由于2x-1>

-1,∴0<

arccot(2x-1)<

∴x∈R,y∈(0,

11.解:

函数y=(arccosx)2-3arccosx,x∈[-1,1],arccosx∈[0,π]

设arccosx=t,0≤t≤π,∴y=t2-3t=(t-

)2-

∴当t=

时,即x=cos

时,函数取得最小值-

当t=π时,即x=-1时,函数取得最大值π2-3π.

简单的三角方程:

1.解下列方程.

(2)5x=2kπ+3x或5x=2kπ+π-3x

解:

作出函数y=sin2x和y=sinx的图象,由图象知,它们的交点有3个。

3.解:

(1)∵tan3x=tanx,∴3x=x+kπ,x=

由于定义域为3x≠kπ+

∴原方程的解集为{x|x=kπ,k∈Z}.

(2)∵sinx+cosx=

∴sin(x+

x+

=2kπ+

或x+

∴x=2kπ-

或x=2kπ+

k∈Z,又x∈[0,4π],∴所有的的解为

2π-

4π-

它们的和为9π.

4.解一因为

(使

的值不可能满足原方程),所以在方程的两边同除以

解关于

[说明]若方程的每一项关于

的次数都是相同的(本题都是二次),那么这样的方程叫做关于

的齐次方程.它的解法一般是,先化为只含有未知数的正切函数的三角方程,然后求解.

解二降次得

化简得

因为

,得

,即

[说明]由于转化方法的不同,所得解集的表达

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1