数学课程标准(2011年版)北京师范大学出版社文档格式.doc

上传人:b****1 文档编号:13128340 上传时间:2022-10-06 格式:DOC 页数:31 大小:155KB
下载 相关 举报
数学课程标准(2011年版)北京师范大学出版社文档格式.doc_第1页
第1页 / 共31页
数学课程标准(2011年版)北京师范大学出版社文档格式.doc_第2页
第2页 / 共31页
数学课程标准(2011年版)北京师范大学出版社文档格式.doc_第3页
第3页 / 共31页
数学课程标准(2011年版)北京师范大学出版社文档格式.doc_第4页
第4页 / 共31页
数学课程标准(2011年版)北京师范大学出版社文档格式.doc_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

数学课程标准(2011年版)北京师范大学出版社文档格式.doc

《数学课程标准(2011年版)北京师范大学出版社文档格式.doc》由会员分享,可在线阅读,更多相关《数学课程标准(2011年版)北京师范大学出版社文档格式.doc(31页珍藏版)》请在冰豆网上搜索。

数学课程标准(2011年版)北京师范大学出版社文档格式.doc

培养学生的抽象思维和推理能力;

培养学生的创新意识和实践能力;

促进学生在情感、态度与价值观等方面的发展。

义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。

袈二、课程基本理念

蝿1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:

人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

薆2.课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。

它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。

课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。

课程内容的组织要重视过程,处理好过程与结果的关系;

要重视直观,处理好直观与抽象的关系;

要重视直接经验,处理好直接经验与间接经验的关系。

课程内容的呈现应注意层次性和多样性。

螃3.教学活动是师生积极参与、交往互动、共同发展的过程。

有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。

羈数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;

要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。

袅学生学习应当是一个生动活泼的、主动的和富有个性的过程。

认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式。

学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。

羄教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。

教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。

薂4.学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。

应建立目标多元、方法多样的评价体系。

评价既要关注学生学习的结果,也要重视学习的过程;

既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。

肈5.信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。

数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。

要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。

芆三、课程设计思路

蚆义务教育阶段数学课程的设计,充分考虑本阶段学生数学学习的特点,符合学生的认知规律和心理特征,有利于激发学生的学习兴趣,引发数学思考;

充分考虑数学本身的特点,体现数学的实质;

在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。

莁按以上思路具体设计如下。

(一)学段划分

蚇为了体现义务教育数学课程的整体性,统筹考虑九年的课程内容。

同时,根据学生发展的生理和心理特征,将九年的学习时间划分为三个学段:

第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。

(二)课程目标

莄义务教育阶段数学课程目标分为总目标和学段目标,从知识技能、数学思考、问题解决、情感态度等四个方面加以阐述。

蒁数学课程目标包括结果目标和过程目标。

结果目标使用“了解、理解、掌握、运用”等术语表述,过程目标使用“经历、体验、探索”等术语表述(术语解释见附录1)。

肈(三)课程内容

袆在各学段中,安排了四个部分的课程内容:

“数与代数”“图形与几何”“统计与概率”“综合与实践”。

“综合与实践”内容设置的目的在于培养学生综合运用有关的知识与方法解决实际问题,培养学生的问题意识、应用意识和创新意识,积累学生的活动经验,提高学生解决现实问题的能力。

膃“数与代数”的主要内容有:

数的认识,数的表示,数的大小,数的运算,数量的估计;

字母表示数,代数式及其运算;

方程、方程组、不等式、函数等。

薁“图形与几何”的主要内容有:

空间和平面基本图形的认识,图形的性质、分类和度量;

图形的平移、旋转、轴对称、相似和投影;

平面图形基本性质的证明;

运用坐标描述图形的位置和运动。

葿“统计与概率”的主要内容有:

收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;

处理数据,包括计算平均数、中位数、众数、极差、方差等;

从数据中提取信息并进行简单的推断;

简单随机事件及其发生的概率。

莄“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。

在学习活动中,学生将综合运用“数与代数”“图形与几何”“统计与概率”等知识和方法解决问题。

“综合与实践”的教学活动应当保证每学期至少一次,可以在课堂上完成,也可以课内外相结合。

羂在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。

为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。

蚁数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。

建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。

蚆符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;

知道使用符号可以进行运算和推理,得到的结论具有一般性。

建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。

肆空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;

想象出物体的方位和相互之间的位置关系;

描述图形的运动和变化;

依据语言的描述画出图形等。

蚁几何直观主要是指利用图形描述和分析问题。

借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。

几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。

螁数据分析观念包括:

了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;

了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;

通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。

肇运算能力主要是指能够根据法则和运算律正确地进行运算的能力。

培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。

蒃推理能力的发展应贯穿在整个数学学习过程中。

推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。

推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;

演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。

在解决问题的过程中,合情推理用于探索思路,发现结论;

演绎推理用于证明结论。

螄模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。

建立和求解模型的过程包括:

从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。

这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。

袁应用意识有两个方面的含义,一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;

另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。

在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。

蒈创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。

学生自己发现和提出问题是创新的基础;

独立思考、学会思考是创新的核心;

归纳概括得到猜想和规律,并加以验证,是创新的重要方法。

创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。

芅第二部分课程目标

蒂一、总目标

羁通过义务教育阶段的数学学习,学生能:

袈1.获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。

蚃2.体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。

芁3.了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。

羁总目标从以下四个方面具体阐述:

羅知识技能

莅●经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。

肀●经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能。

肁●经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能。

莆●参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验。

袃数学思考

肃●建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维与抽象思维。

膀●体会统计方法的意义,发展数据分析观念,感受随机现象。

螇●在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法。

薅●学会独立思考,体会数学的基本思想和思维方式。

袂问题

芀解决

膈●初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力。

羃●获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。

薁●学会与他人合作交流。

莀●初步形成评价与反思的意识。

蕿情感态度

螅●积极参与数学活动,对数学有好奇心和求知欲。

蚄●在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。

蒀●体会数学的特点,了解数学的价值。

螆●养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯,形成实事求是的科学态度。

蒇总目标的这四个方面,不是相互独立和割裂的,而是一个密切联系、相互交融的有机整体。

在课程设计和教学活动组织中,应同时兼顾这四个方面的目标。

这些目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展有着重要的意义。

数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1