答:
先对原序列x(n)以N为周期进行周期延拓后取主值区序列,
再计算N点DFT则得到N点频域采样:
2.2实验程序清单
1时域采样理论的验证程序清单
%时域采样理论验证程序exp2a.m
Tp=64/1000; %观察时间Tp=64微秒
%产生M长采样序列x(n)
%Fs=1000;T=1/Fs;
Fs=1000;T=1/Fs;
M=Tp*Fs;n=0:
M-1;
A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;
xnt=A*exp(-alph*n*T).*sin(omega*n*T);
Xk=T*fft(xnt,M);%M点FFT[xnt)]
yn='xa(nT)';subplot(3,2,1);
tstem(xnt,yn); %调用自编绘图函数tstem绘制序列图
boxon;title('(a)Fs=1000Hz');
k=0:
M-1;fk=k/Tp;
subplot(3,2,2);plot(fk,abs(Xk));title('(a)T*FT[xa(nT)],Fs=1000Hz');
xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])
%=================================================
%Fs=300Hz和Fs=200Hz的程序与上面Fs=1000Hz完全相同。
2频域采样理论的验证程序清单
%频域采样理论验证程序exp2b.m
M=27;N=32;n=0:
M;
%产生M长三角波序列x(n)
xa=0:
floor(M/2);xb=ceil(M/2)-1:
-1:
0;xn=[xa,xb];
Xk=fft(xn,1024); %1024点FFT[x(n)],用于近似序列x(n)的TF
X32k=fft(xn,32) ;%32点FFT[x(n)]
x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)
X16k=X32k(1:
2:
N); %隔点抽取X32k得到X16(K)
x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)
subplot(3,2,2);stem(n,xn,'.');boxon
title('(b)三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])
k=0:
1023;wk=2*k/1024; %
subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');
xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])
k=0:
N/2-1;
subplot(3,2,3);stem(k,abs(X16k),'.');boxon
title('(c)16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])
n1=0:
N/2-1;
subplot(3,2,4);stem(n1,x16n,'.');boxon
title('(d)16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])
k=0:
N-1;
subplot(3,2,5);stem(k,abs(X32k),'.');boxon
title('(e)32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])
n1=0:
N-1;
subplot(3,2,6);stem(n1,x32n,'.');boxon
title('(f)32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])
10.2.3实验程序运行结果
1时域采样理论的验证程序运行结果exp2a.m如下图所示所示。
由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。
当采样频率为1000Hz时频谱混叠很小;当采样频率为300Hz时,在折叠频率150Hz附近频谱混叠很严重;当采样频率为200Hz时,在折叠频率110Hz附近频谱混叠更很严
2时域采样理论的验证程序exp2b.m运行结果下图所所示。
图2
该图验证了频域采样理论和频域采样定理。
对信号x(n)的频谱函数X(ejω)在[0,2π]上等间隔采样N=16时,N点IDFT[]得到的序列正是原序列x(n)以16为周期进行周期延拓后的主值区序列:
由于N与x(n)不相同,如图图10.3.3(c)和(d)所示。
当N=32时,如图图10.3.3(c)和(d)所示,由于N>M,频域采样定理,所以不存在时域混叠失真,因此。
与x(n)相同。
实验三:
用FFT对信号作频谱分析
1.实验目的
学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析
误差及其原因,以便正确应用FFT。
2.实验原理
用FFT对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D和分析误差。
频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是,因此要求。
可以根据此式选择FFT的变换区间N。
误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
3.实验步骤及内容
(1)对以下序列进行谱分析。
选择FFT的变换区间N为8和16两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(2)对以下周期序列进行谱分析。
选择FFT的变换区间N为8和16两种情况分别对以上序列进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(3)对模拟周期信号进行谱分析
选择采样频率,变换区间N=16,32,64三种情况进行谱分析。
分别打印其幅频