数字信号处理实验报告.doc

上传人:b****9 文档编号:130645 上传时间:2022-10-04 格式:DOC 页数:27 大小:657KB
下载 相关 举报
数字信号处理实验报告.doc_第1页
第1页 / 共27页
数字信号处理实验报告.doc_第2页
第2页 / 共27页
数字信号处理实验报告.doc_第3页
第3页 / 共27页
数字信号处理实验报告.doc_第4页
第4页 / 共27页
数字信号处理实验报告.doc_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

数字信号处理实验报告.doc

《数字信号处理实验报告.doc》由会员分享,可在线阅读,更多相关《数字信号处理实验报告.doc(27页珍藏版)》请在冰豆网上搜索。

数字信号处理实验报告.doc

《数字信号处理实验报告》

实验名称:

数字信号处理实验

系别:

兴湘学院

专业班级:

09通信工程

学生学号:

学生姓名:

指导教师:

第一次数字信号上机实验

实验二时域采样与频域采样

1.实验目的

时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

2.实验原理与方法

时域采样定理的要点是:

a)对模拟信号以间隔T进行时域等间隔理想采样,形成的采样信号的频谱是原模拟信号频谱以采样角频率()为周期进行周期延拓。

公式为:

b)采样频率必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的

频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号和模拟信号之间的关系为:

对上式进行傅立叶变换,得到:

在上式的积分号内只有当时,才有非零值,因此:

上式中,在数值上=,再将代入,得到:

上式的右边就是序列的傅立叶变换,即

上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用代替即可。

频域采样定理的要点是:

a)对信号x(n)的频谱函数X(ejω)在[0,2π]上等间隔采样N点,得到

则N点IDFT[]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列,公式为:

b)由上式可知,频域采样点数N必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N点IDFT[]得到的序列就是原序列x(n),即=x(n)。

如果N>M,比原序列尾部多N-M个零点;如果N

与x(n)不相同。

在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。

对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:

“时域采样频谱周期延拓,频域采样时域信号周期延拓”。

因此放在一起进行实验。

3.实验内容及步骤

(1)时域采样理论的验证。

给定模拟信号,

式中A=444.128,=50π,=50πrad/s,它的幅频特性曲线如图10.2.1

的幅频特性曲线

现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。

安照的幅频特性曲线,选取三种采样频率,即=1kHz,300Hz,200Hz。

观测时间选。

为使用DFT,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用,,表示。

因为采样频率不同,得到的,,的长度不同,长度(点数)用公式计算。

选FFT的变换点数为M=64,序列长度不够64的尾部加零。

X(k)=FFT[x(n)],k=0,1,2,3,-----,M-1

式中k代表的频率为。

(2)频域采样理论的验证。

给定信号如下:

编写程序分别对频谱函数在区间上等间隔采样32

和16点,得到:

再分别对进行32点和16点IFFT,得到:

分别画出、的幅度谱,并绘图显示x(n)、的波形,进行对比和分析,验证总结频域采样理论。

4.思考题:

如果序列x(n)的长度为M,希望得到其频谱在上的N点等间隔采样,当N

答:

先对原序列x(n)以N为周期进行周期延拓后取主值区序列,

再计算N点DFT则得到N点频域采样:

2.2实验程序清单

1时域采样理论的验证程序清单

%时域采样理论验证程序exp2a.m

Tp=64/1000; %观察时间Tp=64微秒

%产生M长采样序列x(n)

%Fs=1000;T=1/Fs;

Fs=1000;T=1/Fs;

M=Tp*Fs;n=0:

M-1;

A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;

xnt=A*exp(-alph*n*T).*sin(omega*n*T);

Xk=T*fft(xnt,M);%M点FFT[xnt)]

yn='xa(nT)';subplot(3,2,1);

tstem(xnt,yn); %调用自编绘图函数tstem绘制序列图

boxon;title('(a)Fs=1000Hz');

k=0:

M-1;fk=k/Tp;

subplot(3,2,2);plot(fk,abs(Xk));title('(a)T*FT[xa(nT)],Fs=1000Hz');

xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])

%=================================================

%Fs=300Hz和Fs=200Hz的程序与上面Fs=1000Hz完全相同。

2频域采样理论的验证程序清单

%频域采样理论验证程序exp2b.m

M=27;N=32;n=0:

M;

%产生M长三角波序列x(n)

xa=0:

floor(M/2);xb=ceil(M/2)-1:

-1:

0;xn=[xa,xb];

Xk=fft(xn,1024); %1024点FFT[x(n)],用于近似序列x(n)的TF

X32k=fft(xn,32) ;%32点FFT[x(n)]

x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)

X16k=X32k(1:

2:

N); %隔点抽取X32k得到X16(K)

x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)

subplot(3,2,2);stem(n,xn,'.');boxon

title('(b)三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])

k=0:

1023;wk=2*k/1024; %

subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');

xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])

k=0:

N/2-1;

subplot(3,2,3);stem(k,abs(X16k),'.');boxon

title('(c)16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])

n1=0:

N/2-1;

subplot(3,2,4);stem(n1,x16n,'.');boxon

title('(d)16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])

k=0:

N-1;

subplot(3,2,5);stem(k,abs(X32k),'.');boxon

title('(e)32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])

n1=0:

N-1;

subplot(3,2,6);stem(n1,x32n,'.');boxon

title('(f)32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])

10.2.3实验程序运行结果

1时域采样理论的验证程序运行结果exp2a.m如下图所示所示。

由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。

当采样频率为1000Hz时频谱混叠很小;当采样频率为300Hz时,在折叠频率150Hz附近频谱混叠很严重;当采样频率为200Hz时,在折叠频率110Hz附近频谱混叠更很严

2时域采样理论的验证程序exp2b.m运行结果下图所所示。

图2

该图验证了频域采样理论和频域采样定理。

对信号x(n)的频谱函数X(ejω)在[0,2π]上等间隔采样N=16时,N点IDFT[]得到的序列正是原序列x(n)以16为周期进行周期延拓后的主值区序列:

由于N

与x(n)不相同,如图图10.3.3(c)和(d)所示。

当N=32时,如图图10.3.3(c)和(d)所示,由于N>M,频域采样定理,所以不存在时域混叠失真,因此。

与x(n)相同。

实验三:

用FFT对信号作频谱分析

1.实验目的

学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析

误差及其原因,以便正确应用FFT。

2.实验原理

用FFT对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D和分析误差。

频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是,因此要求。

可以根据此式选择FFT的变换区间N。

误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3.实验步骤及内容

(1)对以下序列进行谱分析。

      

选择FFT的变换区间N为8和16两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

选择FFT的变换区间N为8和16两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析

选择采样频率,变换区间N=16,32,64三种情况进行谱分析。

分别打印其幅频

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 历史学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1