实践活动课“掷一掷”案例分析及反思Word下载.docx

上传人:wj 文档编号:13041629 上传时间:2022-10-03 格式:DOCX 页数:5 大小:21.07KB
下载 相关 举报
实践活动课“掷一掷”案例分析及反思Word下载.docx_第1页
第1页 / 共5页
实践活动课“掷一掷”案例分析及反思Word下载.docx_第2页
第2页 / 共5页
实践活动课“掷一掷”案例分析及反思Word下载.docx_第3页
第3页 / 共5页
实践活动课“掷一掷”案例分析及反思Word下载.docx_第4页
第4页 / 共5页
实践活动课“掷一掷”案例分析及反思Word下载.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

实践活动课“掷一掷”案例分析及反思Word下载.docx

《实践活动课“掷一掷”案例分析及反思Word下载.docx》由会员分享,可在线阅读,更多相关《实践活动课“掷一掷”案例分析及反思Word下载.docx(5页珍藏版)》请在冰豆网上搜索。

实践活动课“掷一掷”案例分析及反思Word下载.docx

根据前面所学的“组合”知识,学生可以把两个数字相加的和的所有情况列出来。

  2.事件的确定性与可能性。

(实验)

  在上面的所有“组合”中,最小的和是1+1=2,最大的和是6+6=12,所以,两个数的和是2,3,4,…,12都是可能发生的事件,但不可能是1和13,这是一个确定事件。

  3.可能性的大小。

(验证)

  虽然掷出的两个数的和可能是2,3,4,…,12中的任一个数,但发生的可能性大小是不同的。

教材通过游戏的方式,让学生探索、比较掷出各种和的可能性大小,由于学生还不会求掷出每个和的确切“概率”,所以只是通过实验粗略地比较一下。

  二、设计理念

  本册是课程改革的实验教材,所以在教学设计上主要以培养学生的创新精神和实践能力为重点,以促进学生全面发展为目标,具体设计体现在:

  第一步,教师和学生示范游戏。

  首先,教师提出规则,学生猜想结果。

可能掷出的结果共有11个,教师选择了其中的5个,而学生可选的有6个,所以学生认为自己赢的可能性比老师大。

这里,教材设置了一个悬念,为学生进行猜想提供了充分的空间。

  接下来,开始游戏。

通过对游戏结果的统计,学生发现与自己原先的猜想并不一致,从而产生认知冲突,为学生进一步自主探索提供了可能。

在这里,教材使用了画“正”字的方法收集数据,可以使学生进一步认识统计在解决问题中的应用。

  第二步,学生小组内游戏,进一步验证。

  通过示范游戏,学生已经掌握了游戏的规则和数据收集的方法。

接下来,学生四人一组,轮流掷,并直接根据掷出的结果画出条形统计图。

从图中可以更加直观地看出掷出的和在2至12中间位置的可能性比较大,而在两边的可能性比较小。

  第三步,理论验证。

  以上都是用实验的方法来看掷出哪些和的可能性大,哪些和的可能性小,这种实验的方法是否能反映客观情况呢?

还需要经过理论的论证。

教材把这个问题提出来,启发学生利用“组合”的知识来探讨掷出各种和的可能性大小。

  由上可以看出,本活动通过让学生猜想、实验、验证等过程,让学生在问题情境中自主探索,解决问题,既发展了学生的动手实践能力,又充分调动了学生的学习兴趣。

  三、教学目标

  1、通过数学活动,感受一些有趣的数学现象。

  2、加强学生的合作交流能力。

  3、培养学生观察问题、分析问题的思维能力。

  四、教学过程

  一、设置问题,猜想的开始。

  师:

今天我和你们一起做个游戏,好不好?

  生:

好!

  教师出示两枚骰子

两枚骰子同时掷,它们的和可能出现哪些情况?

不可能出现哪些情况?

为什么?

它们的和在2~12之间。

(板书:

2~12间的任意一个。

不可能出现比12大的数,因为最大的和是12。

不可能会出现1,两个最小的数是1(它们的)和2,所以不可能会出现1。

  学生小结:

掷两枚骰子可能,它们的和在2~12间的任意一个数,不可能出现和是1和大于12的数。

1和大于12)

  【通过这个活动,让学生说出可能出现的现象与不可能出现的现象,这样可以反馈学生的认知程度,并进一步加深学生们的理解。

非常正确。

我们来投色子比赛,如果和是5,6,7,8,9这五个数,算我赢,如果是其它的六个和,就算你们赢,好吗?

请你们来猜想一下,谁赢的可能性大?

老师选了五个和,我们选了六个和,我们赢的可能性大。

谁的运气好,谁赢的可能性大!

  ·

·

猜想的可能性有很多,下面让我们来实验一下,看看结果!

  (生1来投色子算的,生2到黑板上来记录赢的次数,大家记录在发下来的卷子上。

  【在猜的过程中,了解学生的认知,并由不同的理解让他们有相互的矛盾冲突,激发他们学习的兴趣及提高参与的积极性。

  二、发现问题,猜想的深入。

  比三个回合。

通过这三个回合的比试,你们发现什么问题了吗?

老师赢的次数多。

我选了五个和,你们选了六个和,结果还是我赢的次数多,是不是说明我的运气好呀?

…….

其实我之所以赢,是隐藏着小秘密的,想想或动手抛抛色子,看谁能找出秘密。

  (若无学生发现,则进一步引导。

咱们上节课说过一颗色子6个面,1~6分别在一个面上,所以1~6出现的可能性是一样的!

但现在2~12这11个和出现的可能性是否一样呢?

我们是不是该研究一下呢?

  (生若有所思)

  【比一比的环节,激起学生学习的热情;

都说兴趣是最好的老师,这个比赛比赛是学生产生了情绪高昂的的学习兴趣,从而积极的投入到学习活动中。

换一换,体现出学生不服输的意识,及对只是由初步理解的探讨意识。

  三、解决问题。

猜想的验证。

谁能说说该怎么研究?

抛色子。

非常棒,你们说得很对,咱们就四人小组为一组。

一个人负责记录,其他三个人轮流抛色子,得数是几就在几的上面涂上一个,直到其中的一个格子涂满,游戏结束。

    

  23456789101112

  (请一个四人小组小组长到讲台上领取表格,活动开始。

  每个四人小组进行汇报,师生交流,发现这11个和出现的可能性不同。

  【掷一掷,记一记,让学生在愉悦的活动中加深对知识的理解与感受。

学生积极参与交流活动对学生学习知识是十分重要的。

学生积极参与数学交流活动,不仅可以培养合作学习的精神,还为学生留出了自主探索的时间和空间。

在交流中发现、分析、整理出更多的数学知识。

  收集各小组的统计表,总结。

我们从实验中得到了结论,各小组掷到6、7、8的可能性比较大,2、12的可能性比较小。

为什么会这样呢?

能不能通过数学分析得到结论呢?

  (若学生没有想到,教师进一步引导,列出以下板书。

  在学生的欢呼中我们开始揭开游戏中的秘密。

(数的组成)

  2=1+1

  3=1+2=2+1

  4=1+3=2+2=3+1

  5=1+4=2+3=3+2=4+1

  6=!

+5=2+4=3+3=4+2=5+1

  7=1+6=2+5=3+4=4+3=5+2=6+1

  8=2+6=3+5=4+4=5+3=6+2

  9=3+6=4+5=5+4=6+3

  10=4+6=5+5=6+4

  11=5+6=6+5

  12=6+6

现在你们明白了吗?

为什么老师赢的次数多?

明白了!

那就让你们同桌两人先说一说,等一下再告诉老师吧!

  列出了所有的可能性,从表中可以直观地看出掷出的和是5、6、7、8、9的次数相对较多,而和是2、3、4、10、11、12的次数较少。

  【这就是为什么老师只选择了五个数但赢的机会更多的原因。

教师也可以进一步启发学生采用更简便、更直观的方式来呈现以上结果这样,学生通过动手实践、自主探索,对“可能性”的理解不仅仅停留在有限次实验的结果上,而达到了一个更高的水平。

  四、小结。

老师选了五个和,我们选了六个和,但是五个和出现的可能性比六个和的可能性大,所以老师赢的可能性大。

从黑板上我们发现老师的和出现的次数是24次,我们的和出现的次数是12次。

说明老师赢的可能性大。

非常正确,你们真聪明,通过这节课你们有什么收获吗?

……

你们说的很好,学好数学之所以能让我们聪明,是因为它能揭开许多小秘密,我们想学好数学不但要动手还要动脑,你们希望自已越来越聪明吗?

希望!

你们能既动手又动脑吗?

能。

老师相信你们会越来越聪明的!

  【可能性的大小该落在谁家?

数的组成这个隐秘的秘密终于浮出水面,让学生在活动中感受到数学的魅力,进一步地理解在分析知识的时,不但是要看显示的条件,还要找出隐性的条件才能下结论。

  五:

思考摸奖游戏(机动)

  某商店举行一次摸奖活动:

  游戏规则:

两个色子同时掷出,每掷一次5角钱。

得到的数字和如果是下列几种情况那就可以得到相应的奖品。

  1特等奖

  奖品为漫画书一套价值50元

  2或12一等奖

  奖品为一本日记本价值5元

  3或11二等奖

  奖品为一只圆珠笔价值1元

  4或10三等奖

  奖品为一只铅笔价值2角

  5或9鼓励奖

  奖品为糖一颗价值1角

  对于这样的摸奖活动你想说什么?

  【这样的游戏实际上是一个小小的骗局,只要我们学习了这点知识,就能揭开这个骗局了,引导学生去探索其中的奥秘。

  五、课后反思:

  这是一节活动性很强的课,同时活动的目的是为了引起更深层次的思索,具有较强的逻辑性。

并且根据课程标准的精神,对学生进行了估计能力的培养。

因此这节课必须通过手脑并用才能解决“为什么老师赢的次数多”的问题。

所以教学思路应当具有较强的逻辑性,我主要设计了以下几个环节:

  1、设置问题质疑——猜想的开始

  以游戏入手,激起学生的学习兴趣,并培养他们的估计意识。

让每个学生在已有的知识经验、能力水平和学习方法的基础上提出问题,并进行积极的猜想,活跃思维,促进智力的发展和提高。

  2、发现问题实验——猜想的深入

  当实验结果与事先估计相矛盾时,引起了认知冲突,从而激发了学生探究的心理。

让学生充分经历猜想、实验、验证的过程。

要让学生先通过有限次的实验,对结果有一个初步的猜想,然后通过相对严密的“数学化”的过程,自己得出正确的结论。

例如,让学生思考掷出的和有多少种可能性之前,可以先让学生掷一掷,看看能掷出哪些和,然后,引导学生利用“组合”的知识,说说可能得到哪些和,为什么不可能是1和13。

当学生通过统计有限次数的实验结果,看到掷出的和在2至12的中间位置的可能性比较大,而在两端的可能性比较小时,教师就要引导学生从“组合”的角度去思考原因,使学生理解这种结果的出现不是一种偶然现象,而是由各种组合的多少决定的。

  3、解决问题实践——猜想的验证。

  只有猜想没有行动,那只能是空想。

把猜想与探索实践紧密结合,可以产生猜想的两性循环。

  发现问题后,师生必然要寻找解决问题的方法。

从而通过生生交流、师生交流,训练了学生的逻辑思维能力,找到了解决问题的方案。

  最后较为圆满地解决了“为什么老师赢的次数多”的问题。

并总结出了“想学好数学不但要动手还要动脑”的道理,引导学生去解开生活中的小秘密,最后的摸奖游戏,把课堂延伸到了课外。

---来源网络,仅供分享学习5/5

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 自我管理与提升

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1