实验2非线性方程f(x)0的解法Word文件下载.doc
《实验2非线性方程f(x)0的解法Word文件下载.doc》由会员分享,可在线阅读,更多相关《实验2非线性方程f(x)0的解法Word文件下载.doc(21页珍藏版)》请在冰豆网上搜索。
(c)使用(b)中的程序寻找第1题和第2题中根的位置和极值,并用真实值进行比较。
4.设投射方的运动程为
(a)求当撞击地面时经过的时间,精确到小数点后10位。
(b)求水平飞行行程,精确到小数点后10位。
3.实验结果及分析
1.:
算法:
(1)输入函数g,p0,tol,max1,令k=2。
(2)判断k>
max1是否成立,如成立输出结果,如不成立,执行(3)。
(3)令p(k)=g(p(k-1)),err=|p(k)-p(k-1)|。
(4)判断err<
tol是否成立,如成立,输出结果,如不成立,令k=k+1,跳转到
(2)。
start
Inputg,p0,tol;
k=2
k>
max1
Y
N
Letp(k)=g(p(k-1));
err=|p(k)-p(k-1)|
k=k+1
err<
to1
output
end
对(a)令,简单画出与的图像,可令x=0,,.
图1.与
运行程序后,当输入[k,p,err,P]=fixpt(@g,-1,1e-12,100)
输出k=3
p=2
err=0
P=-122
通过图形我们知道不动点有3个,X=2是吸引不动点,其余2个为排斥不动点。
对(b)令,简单画出与的图像,可令x=1,,.
图2.与
运行程序后,当输入[k,p,err]=fixpt(@g,1,1e-12,100)
输出:
k=37p=err=
通过图形我们知道不动点有1个,X=是吸引不动点。
因而函数只有一个吸引不动点
对(c)令,简单画出与的图像,可令x=1,,
图3.与
运行程序后,当输入[k,p,err]=fixpt(@g,0,1e-12,100)
输出k=38p=err=
运行程序后,当输入[k,p,err]=fixpt(@g,,1e-12,100)
输出k=38p=err=
通过图形我们知道不动点有2个,X=,X=是吸引不动点。
因而函数有两个吸引迭代点。
令(4)令,简单画出与的图像,可令x=1,,。
图4.与
当输入[k,p,err,P]=fixpt(@g,1,1e-12,100)
输出k=2p=1err=0
P=
1
1
通过图形我们知道不动点有2个,X=1是吸引不动点.因而函数只有一个吸引迭代点。
算法:
(1)输入f,a,b,delta,max1,令k=1。
(2)f(a)=feval(f,a);
f(b)=feval(f,b);
k=1.
(3)判断f(a)*f(b)>
0是否成立,若不成立输出结果,若成立执行步骤(4)。
(4)判断k>
max1是否成立,若成立输出结果,若不成立执行步骤(5)。
(5)令dx=yb*(b-a)/(yb-ya),c=b-x,yc=feval(f,c).
(6)判断yc=0是否成立,若成立输出结果,若不成立执行步骤(7)。
(7)判断yc*yb>
0是否成立,若成立,令b=c,yb=yc.若不成立,令a=c,ya=yc.
(8)令err=|b-a|.
(9)判断err<
delta是否成立,若成立,输出结果。
若不成立,令k=k+1,执行(4)。
流程图:
Inputf,a,b,delta,max1,,
f(a)*f(b)>
dx=yb*(b-a)/(b-a)
c=b-x
yc=feval(f,c)
yc=0
yc*yb>
b=c
yb=yc
a=c
ya=yc
err=|b-a|
delta
当输入[c,err,yc]=regula(@f,,,1e-10,100)
输出c=
err=
yc=
3.(a)
算法:
(1)输入f,a,b,N,令k=1.
(2)判断k>
N+1是否成立,若成立,输出并执行步骤(3);
若不成立,令p(k)=feval(f,b*(k-1)/(a*N)),k=k+1,再执行步骤
(2)。
(3)令m=p
(1),k=2.
(4)判断k>
N+1是否成立,若成立,输出并执行步骤(6);
若不成立,执行步骤(5)。
(5)判断m>
p(k)是否成立,若成立,m=p(k),执行步骤(4);
若不成立,执行步骤(4)。
(6)令n=p
(1),k=2.
(7)判断k>
N+1是否成立,若成立,输出;
若不成立,执行步骤(8)。
(8)判断n>
p(k)是否成立,若成立,n=p(k),输出;
若不成立,执行步骤(7)。
Inputf,a,b,Nk=1
N+1
p(k)=feval(f,b*(k-1)/(a*N))
m=p
(1),k=2
m>
p(k)
m=p(k)
n=p
(1),k=2
n>
n=p(k)
(b)
(1)输入f,X,delta.
(2)令Y=f(X),n=length(X),m=0,l=0,X(n+1)=X(n),Y(n+1)=Y(n),k=2.
(3)判断k>
n+1是否成立,若成立,输出;
(4)判断Y(k-1)*Y(k)<
=0是否成立,若成立,m=m+1,r(m)=(X(k-1)+X(k))/2;
(5)令s=(Y(k)-Y(k-1))*(Y(k+1)-Y(k))。
(6)判断(abs(Y(k))<
delta)&
(s<
=0)是否成立,若成立,m=m+1,r(m)=X(k);
(7)判断s<
=1e-6是否成立,若成立,l=l+1,v(l)=Y(k);
若不成立,执行步骤(3).
Inputf,X,delta
Y=f(X),n=length(X),m=0,l=0,X(n+1)=X(n),Y(n+1)=Y(n),k=2
n+1
Y(k-1)*Y(k)<
=0
m=m+1,r(m)=(X(k-1)+X(k))/2
s=(Y(k)-Y(k-1))*(Y(k+1)-Y(k))
(abs(Y(k))<
=0)
m=m+1,r(m)=X(k)
s<
=1e-6
l=l+1,v(l)=Y(k)
(c)用(b)中程序求第1题
输入>
>
X=-2:
:
2;
[r,v]=chao(@k,X,1e-12)
输出
r=
v=+006*
用程序求得c=
用(b)中程序求的根的位置的近似值中有3个,真实值却只在c=左右,说明程序(b)计算结果不过精确。
用(b)中程序求第2题
[r,v]=chao(@o,X,1e-12)
输出r=
v=+004*
用程序求得c=
用(b)中程序求的根的位置的近似值中有1个,与真实值c=
接近,说明程序(b)计算结果较为精确。
(1)输入h,r,p0,p1,delta,max1.令k=1.
(2)判断k>
max1是否成立,若成立,输出;
若不成立,执行(3)。
(3)令p2=p1-feval(f,p1)*(p1-p0)/(feval(f,p1)-feval(f,p0)),err1=|p1-p0|,
err2=|feval(r,p1)-feval(r,p0)|,p0=p1,p1=p2
(4)判断err1<
delta与err2<
delta是否成立,若成立,输出;
若不成立,令k=k+1,执行步骤
(2)。
Inputf,r,p0,p1,deltamax1k=1
P2=p1-feval(f,p1)*(p1-p0)/(feval(h,p1)-feval(h,p0))
Err1=|p1-p0|err2=|feval(r,p1)-feval(r,p0)|
C=feval(r,p1)p0=p1p1=p2
Err2<
delta&
err2<
输入[p1,err1,err2,k,c]=secant(@h,@r,9,,1e-10,100)
输出p1=
err1=
err2=
k=6
c=+003
4.结论
1.采用的不动点迭代法,只能计算出吸引不动点,不能算出排斥迭代点。
2.计算得所求的利率为。
3.用(b)中程序求的根的位置的近似值中有合理的,也有不合理的。
4.计算得投射体撞击地面经过的时间p1=
飞行行程c=+003
21
附件(代码):
1.(a)%plotthefigureofg=x.^5-3.*x.^3-2