精品永磁交流伺服电机原理Word文档格式.docx

上传人:b****1 文档编号:12978409 上传时间:2022-10-01 格式:DOCX 页数:19 大小:338.11KB
下载 相关 举报
精品永磁交流伺服电机原理Word文档格式.docx_第1页
第1页 / 共19页
精品永磁交流伺服电机原理Word文档格式.docx_第2页
第2页 / 共19页
精品永磁交流伺服电机原理Word文档格式.docx_第3页
第3页 / 共19页
精品永磁交流伺服电机原理Word文档格式.docx_第4页
第4页 / 共19页
精品永磁交流伺服电机原理Word文档格式.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

精品永磁交流伺服电机原理Word文档格式.docx

《精品永磁交流伺服电机原理Word文档格式.docx》由会员分享,可在线阅读,更多相关《精品永磁交流伺服电机原理Word文档格式.docx(19页珍藏版)》请在冰豆网上搜索。

精品永磁交流伺服电机原理Word文档格式.docx

同时因为不需要做碳刷的维修,因而降低了维护费用,其坚固、耐温、防爆等特性均适合应用于环境恶劣的工作场所。

由于上述的优点,鼠笼式感应电机已广泛应用于工业界,而随着交流伺服技术的快速发展,未来更将应用于高精度、高转速、高容量的伺服机械系统。

图1 (a)永磁式直流伺服电机与(b)永磁式交流伺服电机的剖面图

2. 永磁式交流伺服电机的工作原理

电机的工作原理可以「弗莱明左手定则」来说明,弗莱明左手定则可用来判断一根载有电流的导线置于磁场中时其受力的方向。

若以左手的食指表示磁场方向,中指表示电流方向,则大姆指表示此导线受力的方向,如图2所示的电流方向,则环状线圈受磁场的作用,将顺正时钟方向旋转,产生的扭矩T可以下式表示

    

 

(1)

其中K为比例常数,I 

为流经线圈的电流,B 

为永久磁铁所造成的磁场强度。

图2 电机的工作原理

图3 永磁式交流伺服电机控制方块图

永磁式交流伺服电机的工作原理可以图3说明,由晶体管三相换流器(inverter)经由脉宽调变(pulsewidthmodulation)在电机的定子造成一旋转磁场,它与转子永久磁铁所造成的磁场相互作用而产生旋转扭矩。

电子换相器(electroniccommutator)的目的即在于使定子所造成的磁场方向与转子永久磁铁的磁场方向保持垂直,而产生最大的扭矩,为了达到这个目的可经由解角器的回授由电子换相器来达成。

在解角器的初级线圈施以90相位差的交流电压 

(如图3所示),则在次级线圈随转子旋转的角度θ,由变压器效应产生

的交流电压,此交流电压经由回授,由相位同步器将三相参考电压

、 

、转换为

,其中Vm为激磁电压的最大值,

为交流电压的角频率。

即为三相换流器的调变信号(modulationsignals),换流器将相位差120的三相交流电压施于电机的定子,如图3所示A、B、C三相的电流分别以IA、 

IB、IC表示,其最大值为Im,各相电流(phasecurrent)可表示为

     

(2)

 (3)

 (4)

设Bm为转子永久磁铁所造磁场强度的最大值,其与电机定子各相的电枢线圈正交磁场强度为 

BA、BB、BC,根据转子角度可表示为

 

    (5)

 (6)

 (7)

 

各相电枢线圈电流IA、IB、IC 

与其所承受的磁场强度BA、BB、BC 

分别产生的旋转扭矩TA、TB、TC可表示为:

     (8)

     (9)

     (10)

其中K为比例常数。

TA、TB与TC 

分别为三相的电流与转子的永久磁铁所产生的扭矩,其合成扭矩T可表示为

     (11)

各相电流(phasecurrent)、电枢线圈所受的磁场大小、产生的扭矩、与电机的相对位置可参考图4。

由(11)式可得知,如果经由相位同步器(phasesynchronizer)使得相电流(如

)与相对应的磁场(如

)保持同步,则合成扭矩T与转子的角度θ无关。

由(11)式可知K为定值,Bm为转子永久磁铁的磁场强度亦为定值,因此T正比于各相电流的振幅Im,由此可知,控制Im 

的大小,即可控制电机所产生的扭矩。

图4 永磁式交流伺服电机扭矩产生的原理。

3. 永磁式交流伺服驱动器的控制原理

图5所示为一典型的永磁式交流伺服驱动器的系统方块图,本节将说明其控制原理。

速度控制回路由速度参考电压Vi与速度回授信号Vo比较,经由速度回路补偿器(velocity-loopcompensator)D(s)产生所需求的扭矩信号vc,假设D(s)为一比例积分补偿器(PI-compensator),则Vc可表式为 

838电子

     (12)

vc 

与由混合器(mixer)产生定子电流参考讯号

,此信号再经由相位同步器与回授相位信号比较产生各相的参考电流讯号,由内环路电流控制回路产生晶体管换流器的脉宽调变信号,使得各相的电流能够追随参考电流,电流回路补偿器可由比例积分器或迟滞控制器(hysteresiscontroller)来设计,图6所示为一电流控制式脉宽调变换流器的系统方块图。

图5 永磁式交流伺服电机驱动器的系统方块图。

图6 电流控制式脉宽调变换流器系统方块图

图7 直流电机的等效电路

要掌握伺服电机的动态响应,则必须先建立其动态数学模型,在此可先以直流伺服电机的数学模型来说明。

图7所示为一直流伺服电机的等效电路,在此忽略因旋转产生的摩擦力,其动态方程式可表示为

     (13)

     (14)

将(13)、(14)式经由拉普拉斯转换(LaplaceTransform)可得

     (15)

     (16)

由(15)、(16)式,直流伺服电机的方块图如图8所示。

图8 直流伺服电机的系统方块图

永磁式交流伺服电机的电流控制回路与直流伺服类似,其系统等效电路方块图如图9所示。

其中Ra、 

La分别为各相电枢线圈的等效电阻与电感。

Ki 

为电流回接增益,Kp为误差放大增益。

参考电流

经由相移位器(phaseshifter)产生三相参考电流

再经由电流回路调节电枢的电流,其结构与直流伺服电机类似,系统方块图因而可简化为如图10所示的结构。

图中虚线所示部份为永磁交流伺服电机的等效方块图。

图9 永磁式交流伺服电机控制系统方块图

图10 简化的永磁式交流伺服电机方块图

图11所示为一典型的永磁交流伺服驱动系统方块图,其回路补偿器的设计,动态响应的分析与仿真均与直流伺服电机驱动系统相同,唯一需要特别注意的即为相位同步器的设计。

图11 永磁式交流伺服驱动器系统方块图。

4. 交流感应伺服电机的工作原理

对感应电机而言,由三相交流电源在定子造成的旋转磁场与转子的感应磁场交互作用,产生扭矩使转子旋转。

交流电机的转速与造成旋转磁场电源的振幅、频率有关,频率愈高,则转速愈快,但转速增加时,由转子造成的反抗电动势(backemf)亦随的增加,因而降低了产生的扭矩,所以必须提高电压,保持定值的气隙磁通量(air-gapflux),在忽略因定子线圈电阻所造成的降压的情况,可维持一固定的电压/频率比,以达成此一目的。

传统上交流感应电机的变速控制,由变频器以开路控制(open-loopcontrol)方式达成,如图12所示,变频器的功能即在于将直流电源转换为交流电源,以提供电机的变速控制。

由于开路控制方式无法对电机因参数变化与负载波动等因素所造成的转速变化提供闭路补偿,因而无法达到准确的转速控制,同时在低速控制范围,因无法有效补偿定子电阻电压降,因此速度控制范围有限,仅能应用于低精度的变速控制场合。

图12 交流电机换流器开路驱动系统。

由于工业应用上对于交流感应电机速度控制精度要求的提高,因而发展出了各种型式的闭路控制(closed-loopcontrol)系统。

其中最重要的即为一种称的为磁场向量控制(field-oriented

vectorcontrol)的方式,在下一节将对此一控制方式加以说明,现在先对鼠笼式感应电机扭矩产生的过程作一说明。

图13 三相二极鼠笼式交流感应电机的结构

图13所示为一理想的三相二极鼠笼式感应电机,定子各相的线圈均以同心方式环绕,各相的电阻电感亦平均分怖。

定子由三相交流电源造成一旋转磁场,经由变压器作用,在转子形成感应电流,此感应电流与定子旋转磁场切割产生扭矩,使得转子旋转。

假设由电机的非正弦波分布绕线与非正弦波的电流所造成的谐波效应(harmoniceffect)可忽略不计,则交流电流在定子与转子间的气隙(air-gap)造成一正弦波分布的旋转磁场,其同步转速(synchronousspeed)可表式为

     (17)

其中Ne为每分钟转速(rpm),fe为定子电源频率(hertz),P为电机的极数。

就交流电机而言,经由气隙磁通量(air-gapflux)与转子磁动力(rotormagnetomotiveforce)的交互作用而产生扭矩,其过程如图14所示。

图14 交流感应电机的扭矩产生原理

当电机以同步转速旋转时,转子无法经由感应作用而产生扭矩,在其它转速时,同步转速与转子转速的差定义为滑差(slip),滑差比(slipratio)则定义为 

     (18)

Nr为转子的每分钟转速(rpm),e、r与st 

分别为定子、转子与滑差的旋转角频率(angularfrequency)。

气隙磁通量(air-gapflux)相对于转子以滑差st 

的转速旋转,因而在转子感应出滑差频率电压(slipfrequencyvoltage),进而在转子形成滑差频率电流(slipfrequency

current)。

图14中正弦气隙磁通波以e 

的角频率旋转,在转子产生感应电压如图中垂直线所示。

转子感应电流落后于转子感应电压的角度定义为转子功率因子角r(rotor

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 中考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1