线性代数知识点框架及习题解读.docx

上传人:b****1 文档编号:12722079 上传时间:2023-04-21 格式:DOCX 页数:21 大小:30.81KB
下载 相关 举报
线性代数知识点框架及习题解读.docx_第1页
第1页 / 共21页
线性代数知识点框架及习题解读.docx_第2页
第2页 / 共21页
线性代数知识点框架及习题解读.docx_第3页
第3页 / 共21页
线性代数知识点框架及习题解读.docx_第4页
第4页 / 共21页
线性代数知识点框架及习题解读.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

线性代数知识点框架及习题解读.docx

《线性代数知识点框架及习题解读.docx》由会员分享,可在线阅读,更多相关《线性代数知识点框架及习题解读.docx(21页珍藏版)》请在冰豆网上搜索。

线性代数知识点框架及习题解读.docx

线性代数知识点框架及习题解读

线性代数知识点框架

(一)

线性代数的学习切入点:

线性方程组。

换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。

线性方程组的特点:

方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。

关于线性方程组的解,有三个问题值得讨论:

(1)、方程组是否有解,即解的存在性问题;

(2)、方程组如何求解,有多少个解;(3)、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。

高斯消元法,最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:

(1)、把某个方程的k倍加到另外一个方程上去;

(2)、交换某两个方程的位置;(3)、用某个常数k乘以某个方程。

我们把这三种变换统称为线性方程组的初等变换。

任意的线性方程组都可以通过初等变换化为阶梯形方程组。

由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。

对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。

我们把这样一张由若干个数按某种方式构成的表称为矩阵。

可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。

系数矩阵和增广矩阵。

高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。

阶梯形方程组,对应的是阶梯形矩阵。

换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。

阶梯形矩阵的特点:

左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。

对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:

首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现0=d这一项,则方程组无解,若未出现0=d一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若r

在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。

在求解过程中,选择阶梯形还是最简形,取决于个人习惯。

常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。

齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。

利用高斯消元法和解的判别定理,以及能够回答前述的基本问题

(1)解的存在性问题和

(2)如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。

对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。

行列式的特点:

有n!

项,每项的符号由角标排列的逆序数决定,是一个数。

通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。

用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。

总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。

线性代数知识点框架

(二)

在利用高斯消元法求解线性方程组的过程中,涉及到一种重要的运算,即把某一行的倍数加到另一行上,也就是说,为了研究从线性方程组的系数和常数项判断它有没有解,有多少解的问题,需要定义这样的运算,这提示我们可以把问题转为直接研究这种对n元有序数组的数量乘法和加法运算。

数域上的n元有序数组称为n维向量。

设向量a=(a1,a2,...,an),称ai是a的第i个分量。

n元有序数组写成一行,称为行向量,同时它也可以写为一列,称为列向量。

要注意的是,行向量和列向量没有本质区别,只是元素的写法不同。

矩阵与向量通过行向量组和列向量组相联系。

对给定的向量组,可以定义它的一个线性组合。

线性表出定义的是一个向量和另外一组向量之间的相互关系。

利用矩阵的列向量组,我们可以把一个线性方程组有没有解的问题转化为一个向量能否由另外一组向量线性表出的问题。

同时要注意这个结论的双向作用。

从简单例子(如几何空间中的三个向量)可以看到,如果一个向量a1能由另外两个向量a2、a3线性表出,则这三个向量共面,反之则不共面。

为了研究向量个数更多时的类似情况,我们把上述两种对向量组的描述进行推广,便可得到线性相关和线性无关的定义。

通过一些简单例子体会线性相关和线性无关(零向量一定线性无关、单个非零向量线性无关、单位向量组线性无关等等)。

从多个角度(线性组合角度、线性表出角度、齐次线性方程组角度)体会线性相关和线性无关的本质。

部分组线性相关,整个向量组线性相关。

向量组线性无关,延伸组线性无关。

回到线性方程组的解的问题,即一个向量b在什么情况下能由另一个向量组a1,a2,...,an线性表出?

如果这个向量组本身是线性无关的,可通过分析立即得到答案:

b,a1,a2,...,an线性相关。

如果这个向量组本身是线性相关的,则需进一步探讨。

任意一个向量组,都可以通过依次减少这个向量组中向量的个数找到它的一个部分组,这个部分组的特点是:

本身线性无关,从向量组的其余向量中任取一个进去,得到的新的向量组都线性相关,我们把这种部分组称作一个向量组的极大线性无关组。

如果一个向量组A中的每个向量都能被另一个向量组B线性表出,则称A能被B线性表出。

如果A和B能互相线性表出,称A和B等价。

一个向量组可能又不止一个极大线性无关组,但可以确定的是,向量组和它的极大线性无关组等价,同时由等价的传递性可知,任意两个极大线性无关组等价。

注意到一个重要事实:

一个线性无关的向量组不能被个数比它更少的向量组线性表出。

这是不难理解的,例如不共面的三个向量(对应线性无关)的确不可能由平面内的两个向量组成的向量组线性表出。

一个向量组的任意两个极大线性无关组所含的向量个数相等,我们将这个数目r称为向量组的秩。

向量线性无关的充分必要条件是它的秩等于它所含向量的数目。

等价的向量组有相同的秩。

有了秩的概念以后,我们可以把线性相关的向量组用它的极大线性无关组来替换掉,从而得到线性方程组的有解的充分必要条件:

若系数矩阵的列向量组的秩和增广矩阵的列向量组的秩相等,则有解,若不等,则无解。

向量组的秩是一个自然数,由这个自然数就可以判断向量组是线性相关还是线性无关,由此可见,秩是一个非常深刻而重要的概念,故有必要进一步研究向量组的秩的计算方法。

线性代数知识点框架(三)

为了求向量组的秩,我们来考虑矩阵。

矩阵的列向量组的秩称为矩阵的列秩,行向量组的秩称为行秩。

对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。

矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。

任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:

A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。

通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。

考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。

总而言之,初等变换不会改变矩阵的秩。

因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。

矩阵的秩,同时又可定义为不为零的子式的最高阶数。

满秩矩阵的行列式不等于零。

非满秩矩阵的行列式必为零。

既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:

系数矩阵的秩等于增广矩阵的秩。

另外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:

系数矩阵的秩r等于未知量数目n,有唯一解,r

齐次线性方程组的解的结构问题,可以用基础解系来表示。

当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。

通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。

非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。

线性代数知识点框架(四)

在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。

矩阵的加法和数乘,与向量的运算类同。

矩阵的另外一个重要应用:

线性变换(最典型例子是旋转变换)。

即可以把一个矩阵看作是一种线性变换在数学上的表述。

矩阵的乘法,反映的是线性变换的叠加。

如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。

矩阵乘法的特点:

若C=AB,则C的第i行、第j列的元素是A的第i行与B的第j列的元素对应乘积之和;A的列数要和B的行数相同;C的行数是A的行数,列数是B的列数。

需要主义的是矩阵乘法不满足交换律,满足结合律。

利用矩阵乘积的写法,线性方程组可更简单的表示为:

Ax=b。

对于C=AB,还可作如下分析:

将左边的矩阵A写成列向量组的形式,即意味着C的列向量组能由A的列向量组表示,从而推知C的列秩小于等于A的列秩;将右边的矩阵B写成行向量组的形式,即意味着C的行向量组能由B的行向量组表示,从而推知C的行秩小于等于B的行秩,再考虑到矩阵的行秩等于列秩等于矩阵的秩,最终可得到结论,C的秩小于等于A的秩,也小于等于B的秩,即矩阵乘积的秩总不超过任一个因子的秩。

关于矩阵乘积的另外一个重要结论:

矩阵乘积的行列式等于各因子的行列式的乘积。

一些特殊的矩阵:

单位阵、对角阵、初等矩阵。

尤其要注意,初等矩阵是单位阵经过一次初等变换得到的矩阵。

每一个初等矩阵对应一个初等变换,因为左乘的形式为PA(P为初等矩阵),将A写成行向量组的形式,PA意味着对A做了一次初等行变换;同理,AP意味着对A做了一次初等列变换,故左乘对应行变换,右乘对应列变换。

若AB=E,则称A为可逆矩阵,B是A的逆阵,同样,这时的B也是可逆矩阵,注意可逆矩阵一定是方阵。

第一种求逆阵的方法:

伴随阵。

这种方法的理论依据是行列式的按行(列)展开。

矩阵可逆,行列式不为零,行(列)向量组线性无关,满秩,要注意这些结论之间的充分必要性。

单位阵和初等矩阵都是可逆的。

若矩阵可逆,则一定可以通过初等变换化为单位阵,这是不难理解的,因为初等矩阵满秩,故最后化成的阶梯型(最简形)中非零行数目等于行数,主元数目等于列数,这即是单位阵。

进一步,既然可逆矩阵可以通过初等变换化为单位阵,而初等变换对应的是初等矩阵,即意味着:

可逆矩阵可以通过左(右)乘一系列初等矩阵化为单位阵,换言之可逆矩阵可看作是一系列初等矩阵的乘积,因为单位阵在乘积中可略去。

可逆矩阵作为因子不会改变被乘(无论左乘右乘)的矩阵的秩。

由于可逆矩阵可以看作是一系列初等矩阵的乘积,可以想象,同样的这一系列初等矩阵作用在单位阵上,结果是将这个单位阵变为原来矩阵的逆阵,由此引出求逆阵的第二种方法:

初等变换。

需要注意的是这个过程中不能混用行列变换,且同样是左乘对应行变换,右乘对应列变换。

矩阵分块,即可把矩阵中的某些行和列的元素看作一个整体,对这些被看作是整体的对象构成的新的矩阵,运算法则仍然适用。

将矩阵看成一些列行向量组或列向量组的形式,实际也就是一种最常见的对矩阵进行分块的方式。

接下来是习题解读

同济五版《线性代数》习题解读

(一)

1、利用对角线法则计算行列式,可以通过几道小题熟悉一下把行列式化成上(下)三角的过程,基本题。

2、3题涉及排列以及行列式的展开准则,不是太重要,了解即可。

4、5、6题是一些计算行列式的练习,不同特点的行列式通常有不同的方法,常见的就是化为上(下)三角,按行(列)展开,某一行(列)是和的形式可进行拆分,基本题,要通过这些练习来熟练行列式的运算这一块。

5题虽然是以方程形式给出,但考察点还是计算。

7、行列式性质的应用,比较重要的题型,重在对思维的训练,而且该题的结论很常用,最好掌握。

8、一些难度较高的行列式的计算题,涉及到不少技巧,而这些技巧通常初学者是想不到的,这时候可以看看答案,体会一下答案的做法,对这块内容的要求和不定积分是类似的。

9、设计巧妙的题目,隐含考点是行列式按行展开的性质:

若是相同行(列)的元素和代数余子式对应相乘求和,结果是行列式的值;若是不同行(列)的元素和代数余子式对应相乘求和,结果为0。

注意此题要求的结果是第三行的代数余子式的某种组合,而根据代数余子式的定义可知,这与题给的行列式中的第三行的元素是无关的,那就可以根据需要把第三行的元素替换为前面要求的式子中的那些系数,这样问题就简化为求一个新的行列式,而无需烦琐的进行四次求代数余子式的运算。

此题技巧性较强,但这个构思方法值得掌握。

10、克兰姆法则的应用,归根结底还是计算行列式。

11、12题是通过行列式来判断齐次方程组的解的情况,基本题,在已经复习完一遍线代后也可以用其它方法(化阶梯行、求秩)来做。

总的来说,第一章的习题大都非常基本,集中于计算层面的考察,没有理解上的难度。

同济五版《线性代数》习题解读

(二)

1、矩阵乘法的基本练习,简单题,但计算很容易出错,不可轻视,(5)小题实际上就是第五章要接触的二次型。

2、直接考察矩阵相关运算,基本题。

3、矩阵的乘法实际上是表示一个线性变换,题目给出了从y到x的变换,还给出了从z到y的变换,要求z到x的变换。

既然一个矩阵可以表示一个线性变换,两个矩阵的乘积即可理解为两个变换的叠加,这也是提供了一个侧面去理解矩阵相乘的意义。

4、5题实际上都是通过一些具体的例子来加深对矩阵运算的理解,比如矩阵乘法不能交换、不能像数乘那样约去因子,等等,这些例子是比较重要的,因为有时能在考场上派上用场,需要熟悉。

6、7题是求矩阵乘方的题目,基本题,但要注意些适当的技巧,比如拆成两个特殊矩阵的和,能简化运算。

8、9是关于对称阵概念的考查,不难但重要,因为这类题即是线代里证明题的代表:

几乎都要从定义出发证明。

所以从这两道题得到的启发是要把线代上的每个知识点都抠得足够细,了然于心。

10、11、12都是矩阵求逆的计算题,只不过表达方式不同,10题是直接提出要求,11题是以矩阵方程的形式来暗示求逆,12题则从线性方程组的角度来暗示求逆。

求逆是错误率很高的一类题目,所以需要重点练习。

13、和3题类似,矩阵的乘法实际上是表示一个线性变换,题目给出了从y到x的变换——可以用一个矩阵表示,反过来求x到y的变换,求逆阵即可。

此题的另外一个暗示:

要能够熟练的掌握从方程组到矩阵的写法,即矩阵方程x=Ay代表一个线性方程组,或者说一个线性变换,对这两种写法都要能够看到一个马上反应到另一个。

14、考察矩阵和其逆阵、伴随阵的关系,同时把行列式加进来,综合性较强的重要题型。

15、16解简单的矩阵方程,注意先对已知等式做一些适当的变形,基本题。

14、15证明矩阵可逆,从定义出发即可,注意从题目中体会思路。

16、考察矩阵和其逆阵、伴随阵的关系,同时把行列式加进来,综合性较强的重要题型。

17、18稍微复杂一些的矩阵方程,因为其中涉及到伴随阵,但也不难,利用好伴随阵和逆阵的关系即可简化,此二题的难度接近考研中的填空题。

19、20是矩阵的乘方(多项式实质也是乘方)运算,在复习完一遍线代后再看发现这其实就是特征值特征向量(对角化)的一个应用,实际上特征值问题本来就可以理解为是为了寻找矩阵乘方运算的捷径而发展起来的,只不过后来发现特征值还有许多其它很好的用处。

21、22证明矩阵可逆,从可逆的定义出发即可,即若能找到某一矩阵与已知矩阵的乘积为单位阵,那么已知矩阵肯定可逆,注意从这两道题目中体会这种常用的思路。

23、24题本身的证明是从定义出发,更重要的是这两道题可以作为结论记的,线代的考研题目常涉及这两个命题。

在线代的学习中,把握好一些不是课本上正面给出(如出现于习题中)的命题是很有好处的。

25、26、27、28都是对分块矩阵运算的考查,作为适当的练习,是必要的。

在分块矩阵这部分知识点特别要注意的是:

要能够根据问题的需要采取适当的分块方式,典型的如行分块和列分块,一个线性方程组可以用矩阵Ax=b来表示,一个矩阵方程AX=B则可看作是若干个线性方程组A(x1x2...xn)=(b1b2...bn)同时成立的结果,当然这只是一个典型的里子,其它还有很多类似的点也要熟练到能够在头脑中随时切换,以适应不同的解题或理解需要。

和第一章类似,第二章的学习也主要集中在计算层面上,我们可以这样来理解,前两章的内容主要是教会我们一些线性代数中基本的运算规则,就如我们以前学数的加减乘除一样,这些规则当然是认为规定的,但是又是在解决某些实际问题的过程中会大量用到的,所以有必要先统一进行了解和学习,比如求行列式可以帮助我们解方程,求矩阵的乘积可以帮助我们进行坐标变换,等等。

同济五版《线性代数》习题解读(三)

1、用初等变换把矩阵化为最简行阶梯形,基本运算的练习,实际上也可以化为阶梯行而不一定非要最简,这类计算要多加练习,需纯熟掌握。

2、3表面上是要求一个能使已知矩阵化为行最简形的可逆阵,实际上是考察初等矩阵,因为化为行最简形的过程就是初等变换过程,对应的是一系列初等矩阵的乘积,把这一过程搞清楚了,要求的矩阵也就相应清楚了。

要知道一个初等矩阵对应一个初等变换,其逆阵也是,从这个意义上去理解可以有效解决很多问题。

4、求矩阵的逆阵的第二种方法(第一种是伴随阵),基本题,同时建议把这两种方法的来龙去脉搞清楚(书上相应章节有解释),即为什么可以通过这两种方法求逆阵。

5、6是解矩阵方程,关键还是求逆,复习过一遍线代的同学就不用拘泥于一种方法了,选择自己习惯的做法即可。

7、考察矩阵秩的概念,所以矩阵的秩一定要搞清楚:

是不为零的子式的最高阶数。

所以秩为r的话只需要有一个不为零的r阶子式,但所有的r+1阶子式都为零;至于r-1阶子式,也是有可能为零的,但不可能所有的都为零,否则秩就是r-1而不是r了。

8、还是涉及矩阵的秩,矩阵减少一行,秩最多减1,也可能不减,不难理解,但自己一定要在头脑中把这个过程想清楚。

9、主要考查矩阵的秩和行(列)向量组的秩的关系,实际上它们是一致的,因为已经知道的两个向量是线性无关的,这样此题就转化为一个简单问题:

在找两个行向量,与条件中的两个行向量组成的向量组线性无关,最后由于要求方阵,所以还要找一个向量,与前面四个向量组和在一起则线性相关,最容易想到的就是0向量了。

10、矩阵的秩是一个重要而深刻的概念,它能够反映一个矩阵的最主要信息,所以如何求矩阵的秩也就相应的是一类重要问题。

矩阵的初等行(列)变换都不会改变其秩,所以可以混用行、列变化把矩阵化为最简形来求出秩。

11题是一个重要命题,经常可以直接拿来用,至于它本身的证明,可以从等价的定义出发:

等价是指两个矩阵可以经过初等变换互相得到,而初等变换是不改变矩阵的秩的,所以等价则秩必相等。

实际上11题因为太过常用,以至于我们常常认为秩相等才是等价的定义,不过既然是充分必要条件,这样理解也并无不可。

12、选取合适的参数值来确定矩阵的秩,方法不止一种,题目不难但比较典型。

13、14题是求解齐次、非齐次方程组的典型练习,务必熟练掌握。

15、线性方程组的逆问题,即已知解要求写出方程,把矩阵的系数看做未知数来反推即可,因为基础解系中自由未知量的个数和有效方程正好是对应的,个人感觉这类题不太重要。

16、17、18题是线性方程组的一类典型题,考研常见题型,讨论不同参数取值时解的情况,要熟练掌握这类题目。

19、证明本身不是很重要,重要的是由题目得到的启示:

由一个向量及其转置(或一个列向量一个行向量)生成的矩阵其秩一定是1。

这实际上也不难理解,矩阵的秩是1意味着每行(或每列)都对应成比例,即可以写成某一列向量乘行向量的形式,列向量的元素就是每行的比例系数,反过来也一样,这个大家可自行写一些具体的例子验证,加深印象。

另外值得注意的是:

列向量乘行向量生成的是矩阵,而行向量乘列向量生成的是数。

20、考察的是矩阵的运算对矩阵秩的影响,抓住R(AB)<=min(R(A),R(B))这个关键命题即可。

或者从同解方程组角度出发,即要证明两个矩阵秩相等,可证其方程组同解。

21、注意A是否可逆未知,故不能用求逆的方法证明,这是易犯的错误之一。

实际上该题考察的还是方程组只有零解的条件:

满秩。

关键一步在于把条件改写为A(X-Y)=0

前两章的习题以锻炼计算能力为主,从第三章开始理解层面的内容逐渐增多,很多概念要引起重视。

同济五版《线性代数》习题解读(四)

首先说一下,第四章的精华就在于勾勒出了向量组、矩阵和线性方程组之间的关系,它们共同形成一个线性代数的知识网络,习题四中的证明题基本上都是对思维的锻炼,做好这些证明题有助于加深对线代知识点相互关系的理解,要重点对待。

1、涉及一个重要的知识转换,即一个向量能否被另一个向量组线性表出的问题实际上就是一个线性方程组是否有解的问题,同时,一个向量组是否能被另一个向量组线性表出的问题实际上就是两个向量组的秩的比较问题,所以此题即转化为考察两个向量组的秩的大小。

因为我们知道一个重要的事实:

一个向量组不可能由比它秩更小的向量组来线性表出,例如,三维空间里的向量(秩是3)永远不可能由平面上的向量(秩是2)来表出。

2、考察向量组的等价,搞清楚何为向量组等价,直接验证即可,基本题。

另外可以发散一下思维,向量组等价和矩阵等价有何不同?

哪个命题的结论更强?

实际上向量组等价则对应矩阵一定等价,反之未必。

3、与线性表出有关的命题,一般用反证法,这类题目可以有效的锻炼解题思路,如果不会要重点体会答案给出的方法和思路。

4、5题涉及线性相关和线性无关的判断,实际上还是转化为方程组有解无解的问题,基本题。

6题考察对两个向量线性相关的理解,实际上就是对应成比例,但实际上很多类似的题目不仅仅局限于两个向量,此题不是太有代表性,了解一下即可。

7、8涉及到一些相关和无关的命题判断,重点在于理解题干的意思,如8

(1)的错误在于放大了线性相关的结论,因为线性相关只需要至少有一个向量可由其余向量表示,而不一定能确定到底是哪个向量能用其余向量表示,类似的去理解清楚其余几个说法要表达的意思,这是第一要务。

至于反例倒在其次,可以通过参考书的答案看看,了解下有这样的反例即可。

9、10题是证明线性相关线性无关的经典题,可先假设其线性组合为零,然后推证系数的情况,若系数可不全为零则线性相关,若系数必须全为零则线性无关,重点题型。

11、12考察如何求一个向量组的秩和最大无关组,注意求向量组的秩只能用一种变换(一般用行变化),化为阶梯形即一目了然,基本题型的练习,要熟练掌握。

13、通过秩来确定参数,基本题,只不过这里是以向量组的形式给出条件,和以线性方程组、矩阵的形式给出条件无本质区别。

14、15是向量组的命题,注意单位坐标向量的特殊性:

线性无关。

另外14题就是15题的特殊情况。

16、用反证法,此题的巧妙之处在于要逐步递推,这是线代习题中少有的过程比结论重要的题目(大多习题都是结论常用所以显得更重要),注意仔细体会证明过程。

17、就是习题三的20题,只不过是以向量组的说法给出。

18、应该从此题中体会到的是:

两个向量组等价,则其关系矩阵一定是满秩的,原因可用矩阵的语言来解释:

两个向量组等价实际上就是通过一系列初等变换可互化,关系矩阵就是这些所所有初等变换对应的初等矩阵的乘积,初等矩阵全部都是满秩的。

19、题目本身不难,直接代入已知条件再作适当的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 成人教育 > 电大

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1