自动控制原理复习总结(精辟).doc
《自动控制原理复习总结(精辟).doc》由会员分享,可在线阅读,更多相关《自动控制原理复习总结(精辟).doc(27页珍藏版)》请在冰豆网上搜索。
2009年秋季自动控制理论
(一)复习指南和要求
1.考试范围:
第二章~第六章+第八章大纲中要求的重点内容
注:
第一章自动控制的一般概念不考,但其内容都为后续章节服务。
特别是作为自动化专业的学生应该知道:
开环和闭环控制系统的原理和区别
2.题型安排与分数设置:
1)选择题---20分(共10小题,每小题2分)
2)填空题---20分
注:
选择题、填空题重点考核对基础理论、基本概念以及常识性的小知识点的掌握程度---对应上课时老师反复强调的那些内容。
如线性系统稳定的充分必要条件、什么影响系统稳态误差等。
3)计算题---60分
注:
计算题重点考核对2-6章重点内容的掌握程度---对应上课时老师和大家利用大量例题反复练习的那部分。
如根轨迹绘制和分析以及基于频率法的串联校正等。
3.考试时间和形式2.50小时闭卷考试
4.※※复习思路与考试准备要求
1)按照下面的复习指南复习,对于要点内容如结构图化简只做题1-2个即可,注意总结分析——反馈思想
2)发挥团队精神,互相帮助,一起复习——系统思维;
3)做题精而细(细到如何用计算器求反三角函数角度等)—最优;
4)以课堂内容为基准,其他题目只是在此基础上举一反三即可——由典型到一般。
5)建议:
利用余下一个月每周用4-6小时,复习1.5章内容。
考试前最后一周,集中练习熟练程度。
5.考场及考试后要求
1)※※务必带相关考试所需证件、足够的笔和计算器;
2)不准作弊(考试分为A、B卷),否则将被驱逐出考场;
3)注意些步骤,如果时间实在来不及,也要写上步骤,步骤分很重要;
4)考试前做好准备;考试中沉着、冷静并把握时间进度,考试后不做任何学生不应该做的行为※。
注意:
下面是每章复习指南与要点解析,但是:
所有给出的例题都是我们课堂讲过的例题。
25
第二章控制系统的数学模型复习指南与要点解析
要求:
根据系统结构图应用结构图的等效变换和简化或者应用信号流图与梅森公式求传递函数(方法不同,但同一系统两者结果必须相同)
一、控制系统3种模型,即时域模型----微分方程;※复域模型——传递函数;频域模型——频率特性。
其中重点为传递函数。
在传递函数中,需要理解传递函数定义(线性定常系统的传递函数是在零初始条件下,系统输出量的拉氏变换式与输入量的拉氏变换式之比)和性质。
零初始条件下:
如要求传递函数需拉氏变换,这句话必须的。
二、※※※结构图的等效变换和简化---实际上,也就是消去中间变量求取系统总传递函数的过程。
1.等效原则:
变换前后变量关系保持等效,简化的前后要保持一致(P45)
2.结构图基本连接方式只有串联、并联和反馈连接三种。
如果结构图彼此交叉,看不出3种基本连接方式,就应用移出引出点或比较点先解套,再画简。
其中:
※引出点前移在移动支路中乘以。
(注意:
只须记住此,其他根据倒数关系导出即可)
引出点后移在移动支路中乘以。
相加点前移在移动支路中乘以。
相加点后移在移动支路中乘以。
[注]:
乘以或者除以,到底在系统中指什么,关键看引出点或者相加点在谁的前后移动。
在谁的前后移动,就是谁。
例1:
利用结构图化简规则,求系统的传递函数C(s)/R(s)
解法1:
1)前面的引出点后移到的后面(注:
这句话可不写,但是必须绘制出下面的结构图,表示你如何把结构图解套的)
2)消除反馈连接
3)消除反馈连接
4)得出传递函数
[注]:
可以不写你是怎么做的,但是相应的解套的那步结构图必须绘制出来。
一般,考虑到考试时间限制,化简结构图只须在纸上绘制出2-3个简化的结构图步骤即可,最后给出传递函数。
。
。
。
)
解法2:
后面的相加点前移到前面,并与原来左数第二个相加点交换位置,即可解套,自己试一下。
[注]:
条条大路通罗马,但是其最终传递函数一定相同)
[注]:
※※※比较点和引出点相邻,一般不交换位置※※※,切忌,否则要引线)
三.※※※应用信号流图与梅森公式求传递函数
梅森公式:
式中,P—总增益;n—前向通道总数;Pk—第k条前向通道增益;
△—系统特征式,即
Li—回路增益;
∑La—所有回路增益之和;
∑LbLc—所有两个不接触回路增益乘积之和;
∑LdLeLf—所有三个不接触回路增益乘积之和;
△k—第k条前向通道的余因子式,在△计算式中删除与第k条前向通道接触的回路。
[注]:
一般给出的是结构图,若用梅森公式求传递函数,则必须先画出信号流图。
注意2:
在应用梅森公式时,一定要注意不要漏项。
前向通道总数不要少,各个回路不要漏。
G1
G2
G3
H1
G5
H3
H2
G4
+
+
+
+
-
-
-
R(s)
C(s)
+
例2:
已知系统的方框图如图所示。
试求闭环传递函数C(s)/R(s)(提示:
应用信号流图及梅森公式)
解1):
绘制信号流图
-G5
-H1
H3
G3
G2
G1
-H2
G4
R(s)
C(s)
[注]:
别忘了标注箭头表示信号流向。
2)应用梅森公式求闭环传递函数:
前向通道增益
;;
回路增益
;;;
特征式
;
余因子式(对应各个前项通道的)
;;------经验:
一般余因子式不会直接等于1,不然太简单了
闭环传递函数
四、知道开环传递函数的定义,并会求闭环系统的传递函数
1.开环传递函数,如图:
(若,则
若,则------常见)
2.四个闭环系统的传递函数----特点分母相同,即特征方程相同
(通常说的输出对输入的传递函数);
[注]:
后面求稳态误差需要
第三章线性系统的时域分析
要求:
1)会分析系统的时域响应,包括动态性能指标;
2)会用劳斯判据判定系统稳定性并求使得系统稳定的参数条件;
3)会根据给出的系统结构图,求出系统稳态误差,并减小或消除之。
一、时域分析方法和思路:
已知系统输入和系统模型,求时域响应。
例1:
求一阶系统的单位阶跃响应。
1)输入,则其拉氏变换为,则
2)
3)对上式取拉氏反变换,得其响应单位阶跃信号的响应为:
[注1]:
※※为稳态分量,它的变化由输入信号的形式(上例中)决定;
※※(上例中)为暂态分量,由闭环传递函数的极点(上例中)决定。
二、线性系统稳定的充要条件是闭环特征根均需具有负实部或者说的极点都在在s平面[左]半部分。
---系统稳定性是系统本来的固有特性,与外输入信号无关。
1.只有当系统的特征根全部具有负实部时,系统达到稳定。
2.如果特征根中有一个或一个以上具有正实部,则这表明系统不稳定;
3.如果特征根中具有一个或一个以上的零实部根,而其余的特征根均具有负实部,则脉冲响应函数趋于常数,或者趋于等幅正弦(余弦)振荡,称为临界稳定。
[注2]:
根据如果极点都在s平面左半部分,则暂态分量随时间增大而衰减为0;
如果极点有一个都在s平面右半部分,则暂态分量随时间增大而发散。
三、※※※二阶系统单位阶跃响应及其欠阻尼情况下指标计算
1.熟悉二阶系统单位阶跃响应的3个对应关系,即:
不同阻尼比类型—不同单位阶跃的时间响应波形图---不同系统稳定性
2.二阶系统欠阻尼单位阶跃响应的指标计算:
欠阻尼二阶系统上升时间、峰值时间、调节时间、超调量计算(公式必须牢记)
,
其中,阻尼角,阻尼振荡频率
例2:
2004年考题已知控制系统如图所示,
(1)确定使闭环系统具有及的值和值;
(2)计算系统响应阶跃输入时的超调量和峰值时间。
解:
(1);
则
(2);。
例32006年考题:
已知控制系统如图所示,
在时,闭环系统响应阶跃输入时的超调量、峰值时间秒,确定系统的值和值;
解:
(1);
;则则
四、附加闭环负实零点对系统影响
具有闭环负实零点时的二阶系统分析对系统的作用表现为:
1.仅在过渡过程开始阶段有较大影响;
2.※附加合适的闭环负实零点可使系统响应速度加快,但系统的超调量略有增大;
3.※负实零点越接近虚轴,作用越强。
五、高阶系统的时域分析---利用闭环主导极点降阶
如果在系统所有的闭环极点中,距离虚轴最近的闭环极点周围没有闭环零点,而其他闭环极点又远离虚轴,且满足
式中,——为主导极点;
——为非主导极点。
则距离虚轴最近的闭环极点所对应的响应分量随着时间的推移衰减得最慢,从而在系统的响应过程中起主导作用。
一般闭环主导极点为共轭闭环主导极点或者一个实闭环主导极点。
六、※※※利用劳斯判据判定系统稳定性并求使得系统稳定的参数条件。
1.※根据特征方程:
,则线性系统稳定的充要条件是劳斯表首列元素均大于零;首列系数符号改变次数与分布在s平面右半部的极点个数相同。
2.劳斯表特殊情况时,系统临界稳定或者不稳定。
3.如果系统稳定,则特征方程系数同号且不缺项;
4.※利用劳斯判据判定系统稳定性
例4:
已知系统结构图,试用劳斯稳定判据确定使闭环系统稳定的k的取值范围。
解:
整理,
从高到低排列特征方程系数
列劳斯表:
S4
1
3
k
S3
3
2
0
S2
7/3
k
S1
(14-9k)/7
0
S0
k
如果劳斯表中第一列的系数均为正值,因此,,且。
所以。
七、※※※稳态误差以及减小或者消除稳态误差
1.稳态误差定义:
其中,误差传递函数,
2.终值定理法求稳态误差
如果有理函数除了在原点有唯一的极点外,在s右半平面及虚轴解析,即的极点均位于s左半平面(包括坐标原点),则根据终值定理可求稳态误差。
[注]:
一般当输入是为阶跃、速度、加速度信号及其组合信号时,且系统稳定时,可应用终值定理求稳态误差。
3.系统型别ν-定义为开环传递函数在s平面的积分环节个数。
其中,K:
系统的开环增益(放大倍数),ν为型别。
4.基于静态误差系数的稳态误差---当-输入为阶跃、速度、加速度信号及其组合信号时,
•静态位置误差系数,
•静态速度误差系数,
•静态加速度误差系数,
要求:
根据给出系统开环传递函数和输入,能用静态误差系数能够求出稳态误差。
例5:
如图
求系统当k=10,输入为r(t)=1.5t.时的稳态误差。
解:
开环传递函数
因为r(t)=1.5t,则,因此。
5.减小或者消除稳态误差的方法:
a.增大开环放大倍数(开环增益)(在保证系统稳定的前提下)
b.提高系统的型别(在保证系统稳定的前提下)。
c.※采用复合控制方法(要知道其原理):
包括输入补偿和扰动补偿两种,都可以消除稳态误差而不影响系统稳定性。
[注]:
若零点包含输入信号的全部极点,则系统无稳态误差。
同理,,若零点包含输入信号的全部极点,则系统无稳态误差。
例62007一复合控制系统如图所示。
图中:
K1、K2、T1、T2均为已知正值。
当输入量r(t)=t2/2时,要求系统的稳态误差为零,试确定参数a和b。
解系统闭环传递函数为
,代入
则(只适应于单位负反馈系统)
欲使系统闭环系统响应速度输入的稳态误差为0,即
,应该包含的全部极点。
,则
[注]:
要求会求误差传递函数,包括扰动下的误差传递函数(一般单位反馈)。
第四章线性系统的根轨迹法
要求: