各大设备的作用.docx

上传人:b****5 文档编号:12218900 上传时间:2023-04-17 格式:DOCX 页数:11 大小:24.88KB
下载 相关 举报
各大设备的作用.docx_第1页
第1页 / 共11页
各大设备的作用.docx_第2页
第2页 / 共11页
各大设备的作用.docx_第3页
第3页 / 共11页
各大设备的作用.docx_第4页
第4页 / 共11页
各大设备的作用.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

各大设备的作用.docx

《各大设备的作用.docx》由会员分享,可在线阅读,更多相关《各大设备的作用.docx(11页珍藏版)》请在冰豆网上搜索。

各大设备的作用.docx

各大设备的作用

1、在网络中,汇聚层交换机和核心层交换机的作用与接入交换机不同,它们承担了网关和三层路由转发功能的重担。

由于IP扫描和DoS攻击对三层交换机的影响和危害严重,常常会使交换机内CPU处理满负荷,造成交换机处理能力下降,甚至瘫痪,用户无法正常上网。

对此,锐捷网络推出的汇聚交换机STAR-S3550系列和RG-S3750交换机,以及核心路由交换机RG-S6500系列和RG-S6800E系列,均采用了业界领先的交换芯片,其内部采用了先进硬件三层转发机制(最长匹配转发方式)可以有效抗击恶意IP地址扫描。

同时,交换机内部更是内嵌了安全策略(如内制的防DoS攻击、防IP扫描机制),保证数据包路由转发功能不受IP扫描和攻击的影响。

IGMP源端口和源IP检查功能对非法组播源的防范和控制,以及对各种硬件ACL(如专家级ACL、时间ACL等)的访问权限控制,都为网络健壮地运营提供了保证。

2、交换机作用

交换机独享带宽的概念指的是相对于集线器而言,比如10M集线器是所有端口共享10M带宽,就好像只有一个车道的马路,给所有汽车来通行,车多就会挤,会塞车。

而10M或者100M交换机,就是每个端口独享10M或者100M带宽,就好像每辆车都有单独的车道来通行。

但是加入这个交换机只有一个100M端口连接到外网,那么所有其他端口的计算机要访问外网,是共享这个100M出口带宽的。

只是说端口间相互访问更快一些。

路由器跟交换机当然不同,路由器有IP分配、路由寻址、地址映射、访问控制这些功能,普通交换机没有这些功能,只有三层交换机可以有这些功能。

一个宽带账号分为多个独享带宽的账号,可以用一个带QOS功能的路由器,由路由器进行拨号,然后在路由器上配置每个IP的带宽分配。

交换机的主要功能包括物理编址、网络拓扑结构、错误校验、帧序列以及流控。

目前交换机还具备了一些新的功能,如对VLAN(虚拟局域网)的支持、对链路汇聚的支持,甚至有的还具有防火墙的功能。

(1)学习:

以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。

(2)转发/过滤:

当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。

(3)消除回路:

当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径

3、路由器的主要作用

路由器是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读”懂对方的数据,从而构成一个更大的网络。

路由器有两大典型功能,即数据通道功能和控制功能。

数据通道功能包括转发决定、背板转发以及输出链路调度等,一般由特定的硬件来完成;控制功能一般用软件来实现,包括与相邻路由器之间的信息交换、系统配置、系统管理等。

多少年来,路由器的发展有起有伏。

90年代中期,传统路由器成为制约因特网发展的瓶颈。

ATM交换机取而代之,成为IP骨干网的核心,路由器变成了配角。

进入90年代末期,Internet规模进一步扩大,流量每半年翻一番,ATM网又成为瓶颈,路由器东山再起,Gbps路由交换机在1997年面世后,人们又开始以Gbps路由交换机取代ATM交换机,架构以路由器为核心的骨干网

交换机与路由器的区别

计算机网络往往由许多种不同类型的网络互连连接而成。

如果几个计算机网络只是在物理上连接在一起,它们之间并不能进行通信,那么这种“互连”并没有什么实际意义。

因此通常在谈到“互连”时,就已经暗示这些相互连接的计算机是可以进行通信的,也就是说,从功能上和逻辑上看,这些计算机网络已经组成了一个大型的计算机网络,或称为互联网络,也可简称为互联网、互连网。

将网络互相连接起来要使用一些中间设备(或中间系统),ISO的术语称之为中继(relay)系统。

根据中继系统所在的层次,可以有以下五种中继系统:

1.物理层(即常说的第一层、层L1)中继系统,即转发器(repeater)。

2.数据链路层(即第二层,层L2),即网桥或桥接器(bridge)。

3.网络层(第三层,层L3)中继系统,即路由器(router)。

4.网桥和路由器的混合物桥路器(brouter)兼有网桥和路由器的功能。

5.在网络层以上的中继系统,即网关(gateway).

当中继系统是转发器时,一般不称之为网络互联,因为这仅仅是把一个网络扩大了,而这仍然是一个网络。

高层网关由于比较复杂,目前使用得较少。

因此一般讨论网络互连时都是指用交换机和路由器进行互联的网络。

本文主要阐述交换机和路由器及其区别。

2交换机和路由器

“交换”是今天网络里出现频率最高的一个词,从桥接到路由到ATM直至电话系统,无论何种场合都可将其套用,搞不清到底什么才是真正的交换。

其实交换一词最早出现于电话系统,特指实现两个不同电话机之间话音信号的交换,完成该工作的设备就是电话交换机。

所以从本意上来讲,交换只是一种技术概念,即完成信号由设备入口到出口的转发。

因此,只要是和符合该定义的所有设备都可被称为交换设备。

由此可见,“交换”是一个涵义广泛的词语,当它被用来描述数据网络第二层的设备时,实际指的是一个桥接设备;而当它被用来描述数据网络第三层的设备时,又指的是一个路由设备。

我们经常说到的以太网交换机实际是一个基于网桥技术的多端口第二层网络设备,它为数据帧从一个端口到另一个任意端口的转发提供了低时延、低开销的通路。

由此可见,交换机内部核心处应该有一个交换矩阵,为任意两端口间的通信提供通路,或是一个快速交换总线,以使由任意端口接收的数据帧从其他端口送出。

在实际设备中,交换矩阵的功能往往由专门的芯片(ASIC)完成。

另外,以太网交换机在设计思想上有一个重要的假设,即交换核心的速度非常之快,以致通常的大流量数据不会使其产生拥塞,换句话说,交换的能力相对于所传信息量而无穷大(与此相反,ATM交换机在设计上的思路是,认为交换的能力相对所传信息量而言有限)。

虽然以太网第二层交换机是基于多端口网桥发展而来,但毕竟交换有其更丰富的特性,使之不但是获得更多带宽的最好途径,而且还使网络更易管理。

而路由器是OSI协议模型的网络层中的分组交换设备(或网络层中继设备),路由器的基本功能是把数据(IP报文)传送到正确的网络,包括:

1.IP数据报的转发,包括数据报的寻径和传送;

2.子网隔离,抑制广播风暴;

3.维护路由表,并与其他路由器交换路由信息,这是IP报文转发的基础。

4.IP数据报的差错处理及简单的拥塞控制;

5.实现对IP数据报的过滤和记帐。

对于不同地规模的网络,路由器的作用的侧重点有所不同。

在主干网上,路由器的主要作用是路由选择。

主干网上的路由器,必须知道到达所有下层网络的路径。

这需要维护庞大的路由表,并对连接状态的变化作出尽可能迅速的反应。

路由器的故障将会导致严重的信息传输问题。

在地区网中,路由器的主要作用是网络连接和路由选择,即连接下层各个基层网络单位--园区网,同时负责下层网络之间的数据转发。

在园区网内部,路由器的主要作用是分隔子网。

早期的互连网基层单位是局域网(LAN),其中所有主机处于同一逻辑网络中。

随着网络规模的不断扩大,局域网演变成以高速主干和路由器连接的多个子网所组成的园区网。

在其中,处个子网在逻辑上独立,而路由器就是唯一能够分隔它们的设备,它负责子网间的报文转发和广播隔离,在边界上的路由器则负责与上层网络的连接。

3第二层交换机和路由器的区别

传统交换机从网桥发展而来,属于OSI第二层即数据链路层设备。

它根据MAC地址寻址,通过站表选择路由,站表的建立和维护由交换机自动进行。

路由器属于OSI第三层即网络层设备,它根据IP地址进行寻址,通过路由表路由协议产生。

交换机最大的好处是快速,由于交换机只须识别帧中MAC地址,直接根据MAC地址产生选择转发端口算法简单,便于ASIC实现,因此转发速度极高。

但交换机的工作机制也带来一些问题。

1.回路:

根据交换机地址学习和站表建立算法,交换机之间不允许存在回路。

一旦存在回路,必须启动生成树算法,阻塞掉产生回路的端口。

而路由器的路由协议没有这个问题,路由器之间可以有多条通路来平衡负载,提高可靠性。

2.负载集中:

交换机之间只能有一条通路,使得信息集中在一条通信链路上,不能进行动态分配,以平衡负载。

而路由器的路由协议算法可以避免这一点,OSPF路由协议算法不但能产生多条路由,而且能为不同的网络应用选择各自不同的最佳路由。

3.广播控制:

交换机只能缩小冲突域,而不能缩小广播域。

整个交换式网络就是一个大的广播域,广播报文散到整个交换式网络。

而路由器可以隔离广播域,广播报文不能通过路由器继续进行广播。

4.子网划分:

交换机只能识别MAC地址。

MAC地址是物理地址,而且采用平坦的地址结构,因此不能根据MAC地址来划分子网。

而路由器识别IP地址,IP地址由网络管理员分配,是逻辑地址且IP地址具有层次结构,被划分成网络号和主机号,可以非常方便地用于划分子网,路由器的主要功能就是用于连接不同的网络。

5.保密问题:

虽说交换机也可以根据帧的源MAC地址、目的MAC地址和其他帧中内容对帧实施过滤,但路由器根据报文的源IP地址、目的IP地址、TCP端口地址等内容对报文实施过滤,更加直观方便。

6.介质相关:

交换机作为桥接设备也能完成不同链路层和物理层之间的转换,但这种转换过程比较复杂,不适合ASIC实现,势必降低交换机的转发速度。

因此目前交换机主要完成相同或相似物理介质和链路协议的网络互连,而不会用来在物理介质和链路层协议相差甚元的网络之间进行互连。

而路由器则不同,它主要用于不同网络之间互连,因此能连接不同物理介质、链路层协议和网络层协议的网络。

路由器在功能上虽然占据了优势,但价格昂贵,报文转发速度低。

近几年,交换机为提高性能做了许多改进,其中最突出的改进是虚拟网络和三层交换。

划分子网可以缩小广播域,减少广播风暴对网络的影响。

路由器每一接口连接一个子网,广播报文不能经过路由器广播出去,连接在路由器不同接口的子网属于不同子网,子网范围由路由器物理划分。

对交换机而言,每一个端口对应一个网段,由于子网由若干网段构成,通过对交换机端口的组合,可以逻辑划分子网。

广播报文只能在子网内广播,不能扩散到别的子网内,通过合理划分逻辑子网,达到控制广播的目的。

由于逻辑子网由交换机端口任意组合,没有物理上的相关性,因此称为虚拟子网,或叫虚拟网。

虚拟网技术不用路由器就解决了广播报文的隔离问题,且虚拟网内网段与其物理位置无关,即相邻网段可以属于不同虚拟网,而相隔甚远的两个网段可能属于不同虚拟网,而相隔甚远的两个网段可能属于同一个虚拟网。

不同虚拟网内的终端之间不能相互通信,增强了对网络内数据的访问控制。

交换机和路由器是性能和功能的矛盾体,交换机交换速度快,但控制功能弱,路由器控制性能强,但报文转发速度慢。

解决这个矛盾的技术是三层交换,既有交换机线速转发报文能力,又有路由器良好的控制功能。

4第三层交换机和路由器的区别

在第三层交换技术出现之前,几乎没有必要将路由功能器件和路由器区别开来,他们完全是相同的:

提供路由功能正在路由器的工作,然而,现在第三层交换机完全能够执行传统路由器的大多数功能。

作为网络互连的设备,第三层交换机具有以下特征:

1.转发基于第三层地址的业务流;

2.完全交换功能;

3.可以完成特殊服务,如报文过滤或认证;

4.执行或不执行路由处理。

第三层交换机与传统路由器相比有如下优点:

1.子网间传输带宽可任意分配:

传统路由器每个接口连接一个子网,子网通过路由器进行传输的速率被接口的带宽所限制。

而三层交换机则不同,它可以把多个端口定义成一个虚拟网,把多个端口组成的虚拟网作为虚拟网接口,该虚拟网内信息可通过组成虚拟网的端口送给三层交换机,由于端口数可任意指定,子网间传输带宽没有限制。

2.合理配置信息资源:

由于访问子网内资源速率和访问全局网中资源速率没有区别,子网设置单独服务器的意义不大,通过在全局网中设置服务器群不仅节省费用,更可以合理配置信息资源。

3.降低成本:

通常的网络设计用交换机构成子网,用路由器进行子网间互连。

目前采用三层交换机进行网络设计,既可以进行任意虚拟子网划分,又可以通过交换机三层路由功能完成子网间通信,为此节省了价格昂贵的路由器。

4.交换机之间连接灵活:

作为交换机,它们之间不允许存在回路,作为路由器,又可有多条通路来提高可靠性、平衡负载。

三层交换机用生成树算法阻塞造成回路的端口,但进行路由选择时,依然把阻塞掉的通路作为可选路径参与路由选择。

5结论

综上所述,交换机一般用于LAN-WAN的连接,交换机归于网桥,是数据链路层的设备,有些交换机也可实现第三层的交换。

路由器用于WAN-WAN之间的连接,可以解决异性网络之间转发分组,作用于网络层。

他们只是从一条线路上接受输入分组,然后向另一条线路转发。

这两条线路可能分属于不同的网络,并采用不同协议。

相比较而言,路由器的功能较交换机要强大,但速度相对也慢,价格昂贵,第三层交换机既有交换机线速转发报文能力,又有路由器良好的控制功能,因此得以广播应用。

4、服务器作用

服务器是指管理和传输信息的一种计算机系统

服务器是一种高性能计算机,作为网络的节点,存储、处理网络上80%的数据、信息,因此也被称为网络的灵魂。

做一个形象的比喻:

服务器就像是邮局的交换机,而微机、笔记本、PDA、手机等固定或移动的网络终端,就如散落在家庭、各种办公场所、公共场所等处的电话机。

我们与外界日常的生活、工作中的电话交流、沟通,必须经过交换机,才能到达目标电话;同样如此,网络终端设备如家庭、企业中的微机上网,获取资讯,与外界沟通、娱乐等,也必须经过服务器,因此也可以说是服务器在“组织”和“领导”这些设备。

它是网络上一种为客户端计算机提供各种服务的高性能的计算机,它在网络操作系统的控制下,将与其相连的硬盘、磁带、打印机、Modem及各种专用通讯设备提供给网络上的客户站点共享,也能为网络用户提供集中计算、信息发表及数据管理等服务。

它的高性能主要体现在高速度的运算能力、长时间的可靠运行、强大的外部数据吞吐能力等方面。

服务器的构成与微机基本相似,有处理器、硬盘、内存、系统总线等,它们是针对具体的网络应用特别制定的,因而服务器与微机在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面存在差异很大。

尤其是随着信息技术的进步,网络的作用越来越明显,对自己信息系统的数据处理能力、安全性等的要求也越来越高,如果您在进行电子商务的过程中被黑客窃走密码、损失关键商业数据;如果您在自动取款机上不能正常的存取,您应该考虑在这些设备系统的幕后指挥者————服务器,而不是埋怨工作人员的素质和其他客观条件的限制。

目前,按照体系架构来区分,服务器主要分为两类:

ISC(精简指令集)架构服务器:

这是使用RISC芯片并且主要采用UNIX操作系统的服务器,如Sun公司的SPARC、HP公司的PA-RISC、DEC的Alpha芯片、SGI公司的MIPS等。

IA架构服务器:

又称CISC(复杂指令集)架构服务器,即通常所讲的PC服务器,它是基于PC机体系结构,使用Intel或与其兼容的处理器芯片的服务器,如联想的万全系列、HP的Netserver系列服务器等。

从当前的网络发展状况看,以“小、巧、稳”为特点的IA架构的PC服务器得到了更为广泛的应用。

5、磁盘阵列作用

磁盘阵列简介

磁盘阵列简称RAID(RedundantpArrayspofpInexpensivepDisks),有“价格便宜且多余的磁盘阵列”之意。

其原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。

磁盘阵列主要针对硬盘,在容量及速度上,无法跟上CPU及内存的发展,提出改善方法。

磁盘阵列是由很多便宜、容量较小、稳定性较高、速度较慢磁盘,组合成一个大型的磁盘组,利用个别磁盘提供数据所产生的加成效果来提升整个磁盘系统的效能。

同时,在储存数据时,利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。

p

磁盘阵列还能利用同位检查(ParitypCheck)的观念,在数组中任一颗硬盘故障时,仍可读出数据,在数据重构时,将故障硬盘内的数据,经计算后重新置入新硬盘中。

磁盘阵列的由来:

p

由美国柏克莱大学(UniversitypofpCalifornia-Berkeley)在1987年,发表的文章:

“ApCasepforpRedundantpArrayspofpInexpensivepDisks”。

文章中,谈到了RAID这个字汇,而且定义了RAID的5层级。

柏克莱大学研究其研究目的为,反应当时CPU快速的性能。

CPU效能每年大约成长30~50%,而硬磁机只能成长约7%。

研究小组希望能找出一种新的技术,在短期内,立即提升效能来平衡计算机的运算能力。

在当时,柏克莱研究小组的主要研究目的是效能与成本。

p

另外,研究小组也设计出容错(fault-tolerance),逻辑数据备份(logicalpdatapredundancy),而产生了RAIDp理论。

研究初期,便宜(Inexpensive)的磁盘也是主要的重点,但后来发现,大量便宜磁盘组合并不能适用于现实的生产环境,后来Inexpensive被改为independence,许多独立的磁盘组。

p

磁盘阵列,时事所趋:

p

自有PC以来,硬盘是最常使用的储存装置。

但在整个计算机系统架构中,跟CPU与RAM来比,硬盘的速度是PC中最弱的设备之一。

所以,为了加速计算机整体的数据流量,增加储存的吞吐量,进阶改进硬盘数据的安全,磁盘阵列的设计因应而生。

p

硬盘随着科技的日新月异,现在其容量已达80GB以上,转速到了2万转,甚至25000转,而且价格实在是很便宜,再加现在企业流行,人力资源规画(EnterprisepResourcepPlanning:

ERP)是每个公司建构网络的主要目标。

所以,利用局域网络来传递数据,服务器所使用的硬盘显得非常重要,除了容量大、速度快之外,稳定更是基本要求。

基于此因,磁盘阵列开始广泛的应用在个人计算机上。

p

磁盘阵列其样式有三种,一是外接式磁盘阵列柜、二是内接式磁盘阵列卡,三是利用软件来仿真。

外接式磁盘阵列柜最常被使用大型服务器上,具可热抽换(HotpSwap)的特性,不过这类产品的价格都很贵。

内接式磁盘阵列卡,因为价格便宜,但需要较高的安装技术,适合技术人员使用操作。

另外利用软件仿真的方式,由于会拖累机器的速度,不适合大数据流量的服务器。

p

由上述可知,现在IDE磁盘阵列大行其道的道理;IDE接口硬盘的稳定度与效能表现已有很大的提升,加上成本考量,所以采用IDE接口硬盘来作为磁盘阵列的决解方案,可说是最佳的方式

在网络存储中,磁盘阵列是一种把若干硬磁盘驱动器按照一定要求组成一个整体,整个磁盘阵列由阵列控制器管理的系统。

磁带库是像自动加载磁带机一样的基于磁带的备份系统,磁带库由多个驱动器、多个槽、机械手臂组成,并可由机械手臂自动实现磁带的拆卸和装填。

它能够提供同样的基本自动备份和数据恢复功能,但同时具有更先进的技术特点。

掌握网络存储设备的安装、操作使用也是网管员必须要学会的。

在架构无线局域网时,对无线路由器、无线网络桥接器AP、无线网卡、天线等无线局域网产品进行安装、调试和应用操作。

磁盘阵列的主流结构:

磁盘阵列作为独立系统在主机外直连或通过网络与主机相连。

磁盘阵列有多各端口可以被不同主机或不同端口连接。

一个主机连接阵列的不同端口可提升传输速度。

和目前PC用单磁盘内部集成缓存一样,在磁盘阵列内部为加快与主机交互速度,都带有一定量的缓冲存储器。

主机与磁盘阵列的缓存交互,缓存与具体的磁盘交互数据。

在应用中,有部分常用的数据是需要经常读取的,磁盘阵列根据内部的算法,查找出这些经常读取的数据,存储在缓存中,加快主机读取这些数据的速度,而对于其他缓存中没有的数据,主机要读取,则由阵列从磁盘上直接读取传输给主机。

对于主机写入的数据,只写在缓存中,主机可以立即完成写操作。

然后由缓存再慢慢写入磁盘。

6、存储服务器、数据库服务器、流媒体服务器的区别

存储服务器通常是独立的单元。

有的时候它们会被设计成4U机架式。

或者,它们也可以由两个箱子组成——一个存储单元以及一个位于附近的服务器。

然后两个箱子可以并行地安装在机柜中。

像SunStorEdge3120存储单元和SunFireX4100服务器,就可以合并为一个存储服务器并放置在一个机柜中。

运行在局域网中的一台或多台计算机和数据库管理系统软件共同构成了数据库服务器,数据库服务器为客户应用提供服务,这些服务是查询、更新、事务管理、索引、高速缓存、查询优化、安全及多用户存取控制等。

作为新一代互联网应用的标志,流媒体技术在近几年得到了飞速的发展。

而流媒体服务器又是流媒体应用的核心系统,是运营商向用户提供视频服务的关键平台。

其主要功能是对媒体内容进行采集、缓存、调度和传输播放,流媒体应用系统的主要性能体现都取决于媒体服务器的性能和服务质量。

因此,流媒体服务器是流媒体应用系统的基础,也是最主要的组成部分。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1