常用单模光纤的特性和应用.docx

上传人:b****4 文档编号:12129101 上传时间:2023-04-17 格式:DOCX 页数:12 大小:42.21KB
下载 相关 举报
常用单模光纤的特性和应用.docx_第1页
第1页 / 共12页
常用单模光纤的特性和应用.docx_第2页
第2页 / 共12页
常用单模光纤的特性和应用.docx_第3页
第3页 / 共12页
常用单模光纤的特性和应用.docx_第4页
第4页 / 共12页
常用单模光纤的特性和应用.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

常用单模光纤的特性和应用.docx

《常用单模光纤的特性和应用.docx》由会员分享,可在线阅读,更多相关《常用单模光纤的特性和应用.docx(12页珍藏版)》请在冰豆网上搜索。

常用单模光纤的特性和应用.docx

常用单模光纤的特性和应用

常用单模光纤的特性和应用

一、前言

光纤是光信号的物理传输媒质,其特性直接影响光纤传输系统的带宽和传输距离,目前已开发出不同特性的光纤以适应不同的应用,常用的光纤种类有常规单模光纤G.652色散位

移光纤G.653、截止波长位移单模光纤G.654、非零色散位移光纤G.655和适用于宽带传送的非零色散位移光纤G.656,前三种光纤的低损耗区都在1550nm波长附近,G.656光纤将非零色散位移光纤使用的波长范围延伸到了1460〜1625nm波段。

我国光纤标准等同采用了IEC(国际电工委员会)的分类编号方法,但人们有时也按ITU-T(国际电信联盟电信标准化部)建议的编号称呼相应的光纤,例如G.652光纤、G.655光纤。

玻璃芯/玻璃包层单模光纤的分类如表1所示。

目前在全球通信网络中最常用的单模光纤是:

G.652,G.655和G.656光纤。

表1.单模光纤的分类

IEC分类编号

光纤名称

ITU-T建议编号

B1.1

非色散位移单模光纤

G.652A,B

B1.2

截止波长位移单模光纤

G.654

Bl.3

波长扩展的非色散位移单模光纤

G.652C

B2

色散位移单模光纤

G.653

B4

非零色散位移单模光纤

G.655

二、各种光纤的应用特性

2.1、G.652单模光纤特性与应用

ITU-TG.652新建议将G.652光纤分为A,B,C三个子类,如表1所示,A,B子类和C子类光纤分别与B1.1类和B1.3类光纤相对应。

A子类光纤适用于最高可达STM-16(2.5Gb/s)传输系统。

B子类光纤适用于最高可达STM-64(10Gb/s)传输系统,对于1550nm波长区域的高速率传输通常需要波长色散调节。

C子类光纤适用于最高可达STM-64(10Gb/s)传输系统,对于1550nm波长区域的高速率传输通常也需波长色散调节。

该子类光纤的主要特点是可将ITU-TG.957建议的SDH专输扩展到1360--1530nm波段,在此波段内,波长色散会对最大线路长度有所限制或需要进行调节。

表2G.652单模光纤特性

项目

特性要求

A子类B子类C子类

模场直径1310nm(8.6-9.5)士0.7叩

包层直径125士1叩

同心度偏差<0.8ym

包层不圆度毛<2.0%

光缆截止波长<1260ym

宏弯损耗1550nm<0.50dB

(37.5mr半径100圈)16xx⑴nm—<0.50dB

筛选应力>0.69GPa

色散零色散波长入01300nm<入0<1324nm

特性零色散斜率So<0.093ps/nm匂

未成缆光纤偏振模色散系数一

光缆衰减系数1310nm<0.5dB/km<0.4dB/km

③④

yyyynm—一xxdB/km

1550nm<0.4dB/km<0.35dB/km

16xx⑴nm—<0.40dB/km

光缆偏振模色散系数M—20个光缆段

Q一0.01%

PMD一<0.5ps/(Km)1/2

1上限波长尚未完全确定,且xx<25nm。

2如果对一种特定结构的光缆已经过验证.制造厂家可以在满足光缆PMD基本要求的情况下,对未成缆光纤选择规定最大的偏振模色散系数。

3对于波长丫丫丫丫由买卖双方协商,建议为1383nmcyyyy<1480nm如果规定是水峰

波长(1383nm),则在扩展波段中大于和小于yyyy的波长均可使用;如果规定值大于水峰

波长,则在扩展波段中只有大于yyyy的波长可以使用。

4取样光纤在室温和0.01大气压的氢气中暴露4天,取出再等待14天,这样老化后,在yyyynm测量的衰减平均值应不大于在1310nm规定的衰减值。

2.2、G.653单模光纤特性与应用

满足ITU-T.G.653要求的单模光纤,常称色散位移光纤(DSPDispersionShifled

Fiber),其零色散波长移位到损耗极低的155Onm处。

这种光纤主要用于海底光缆系统,它把单一波长传送几千公里,也有些国家一度广泛用于陆地干线中,特别在日本被推广使用,我国京九干线上也有所采纳。

美国AT&T早期发现DSF勺严重不足,在1550nm附近低色散区存在有害的四波混频等光纤非线性效应,阻碍光纤放大器在1550nm窗口的应用。

2.3、G.655单模光纤特性与应用

ITU-TG.655新建议将G.655光纤分为A,B两个子类。

两个子类光纤均是非零色散位移单模光纤。

由于其具有少量色散,抑制了对密集波分复用系统极为不利的四波混合增长和非线性效应。

该光纤的最佳使用波长为1530-1565nm某些场合也可扩展到更高的波长,直至16xxnm(xxw25nm)。

A类光纤适用于G.691具有光放大器的单通道SDH系统和G.692具有光放大器的多通道系统,但有以下限制:

(1)中等注一入功率(-5dBm);

(2)通路间隔妻200GHz;

(3)除非PMD进行规定,会对10Gb/s系统传输长度有所限制。

B类光纤也适用G.691具有光放大器的单通道SDH系统和G.692具有光放大器的多通道系统,但有以下扩展:

(1)更高的注入功率;

(2)通路间隔簇100GHz;

(3)对400km长的10Gb/s系统,没有PMD可题。

表4G.655单模光纤特性

项目

特性要求

A子类B子类

模场直径1310nm(8-11)士0.7叩

包层直径125士1叩

同心度偏差<0.8ym

包层不圆度毛<2.0%

光缆截止波长<1480ym

宏弯损耗1550nm<0.50dB

(37.5mr半径100圈)16xxnm—<0.50dB

波长色散系数

 

未成缆光纤偏振模色散系数

光缆衰减系数

1550nm

<0.35dB/km

16xx⑴nm

<0.40dB/km

20个光缆段

光缆偏振模色散系数

0.01%

PMD

>0.5ps/(Km)1/2

ITU-TG.655建议对A和B子类单模光纤的特性要求如表4所示。

表4中可以看出:

(1)A,B两子类光纤对色散的规定有所不同,B子类还对上下波长边界的色散差(Dmax—Dmin)进

行了限制,使色散斜率较小,有利于密集波分复用(DWDM的应用。

(2)B子类单模光纤还可扩展应用于L波段,对其色散系数提出了要求(特定),对16xxnm

的光缆衰减系数也作了规定。

(3)B子类单模光纤对光缆偏振模色散系数提出了具体规定。

表5三种光纤的主要技术参数

光纤种类

G.652光纤

G.653光纤

G.655光纤

大有效面积光纤

模场直径

(标称值)

8.6-9.5ym变化

不超过土10%

7-8.3ym变化

不超过土10%

8-11ym变化不超过土10%

9.5ym变化不超过土10%

模场同心度偏差

<1ym

<1ym

<1ym

<1ym

2m长光纤截止波长入C

<1250nm

--

<1470nm

--

22m长光缆

截止波长入CC

<1260nm

<1270nm

<1480nm

--

零色散波长

1300-1324nm

1500-1600nm

--

--

零色散斜率

<0.093psnm

(的平方)km

<0.085psnm

(的平方)km

--

<0.1ps/nm

(的平方)km

最大色散系数

<20ps/nm•km(1525-1575nm)

<3.5ps/nm・km(1525-1575nm)

0.1-6.0ps/nm・km(1530-1565nm)

i1-6.0ps/nm・km

(1530-1565nm)

包层直径

125±2ym

125±2ym

125±2ym

125±2ym

典型衰减系数

(1550nn)

0.17-0.25dB/km

0.19-0.25dB/km

0.19-0.25dB/km

0.19-0.25dB/km

1550nm的宏弯损耗

<1dB

<0.5dB

<0.5dB

<0.5dB

适用工作窗口

1310nm和1550nm

1550nm

1550nm

1550nm

三、光纤衰减和色散对传输系统中继距离的影响。

3.1G.652光纤衰减和色散对传输系统中继距离的影响

在155Onm处,常规的G.652光纤具有最低损耗特性。

再配合使用光纤放大器,可以在

G.652光纤上开通8X2.5Gbit/s或16甚至32x2.5Gbit/s系统。

但由于G.652光纤在

155Onm处的色散值较大,受其影响,当单一波道上的传输速率提高到10Gbit/s时,传输

距离就会大大缩短。

因此,高速率的传输系统要求采取色散补偿的方式降低G.652光纤在1550nm处的色散系数,例如在G.652光纤线路中加入一段色散补偿模块。

但由于采用色散补偿模块,会引入较高的插入损耗,系统必须使用光纤放大器,造成系统建设成本的提高。

因此在骨干传输网上,利用G.652光纤开通高速、超高速系统不是今后的发展方向。

在2003年1月修改G.652光纤标准时,希望全面提高G.652光纤的特性,至少都要支持10Gbit/s的长途应用,对G.652B要求支持40Gbit/s的长途应用,所以开始提出G.652B的PMD应小于0.10ps/(km)1/2。

后来基于考虑40Gbit/s的应用主要从城域网开始,10Gbit/s系统的传送在3000km左右已经可以覆盖大部分应用情况,所以放宽到0.20

ps/(km)1/2。

经过调整过的各类G.652光纤的特性为:

G.652A支持10Gbit/s系统传输距离可达400km10Gbit/s以太网的传输达40km,支持40Gbit/s系统的距离为2km。

对于G.652B型光纤,必须支持10Gbit/s系统传输距离可达3000km以上,40Gbit/s系统的传输距离为80km。

3.2G.653光纤衰减和色散对传输系统中继距离的影响

将G.652光纤的零色散波长从1310nm移至1550nm处,便成为了G.653,色散位移光纤。

在G.653光纤上,使用光纤放大器技术,可将高功率光信号在单波道上传输得更远,是极好的单波道传输媒介,可以毫无困难地开通长距离高速系统。

但是对于DWD复用系统,这种

光纤不是合适的媒介。

G.653光纤在工作区内的零色散点是导致光纤非线性四波混合效应的源泉。

一般来讲,四波混合的效率取决于通路间隔和光纤的色散。

通路间隔越窄,光纤色散越小,不同光波间相位匹配就越好,四波混合的效率也就越高,而且一旦四波混合现象产生,就无法用任何均衡技术来消除。

但是,若有意识地在生产光纤时使其具有一定的色散,比如,大于0.1ps/nm-km,则可有效地抑制四波混合现象。

为此,一种专门为高速超大容量波分复用系统设计的新型光纤诞生了,这就是G.655,非零色散位移光纤。

3.3G.655光纤衰减和色散对传输系统中继距离的影响

G.655光纤的零色散点不在1550nm附近,而是向长波长或短波长方向位移,使得

1550nm附近呈现一定大小的色散(ITU—T规范为0.1-6ps/nm・km)。

这样,可大大减轻四

波混合的影响,有利于密集波分复用系统的传输。

但同时,也要控制155Onm附近的色散值

不能太大,以保证速率超过10Gbit/s的信号可以不受色散限制地传输300km以上。

按照光纤在155Onm处的色散系数的正负,G.655型光纤又分为两类:

正色散系数G.655型光纤和负色散系数G.655型光纤。

典型的G.655光纤在1550nm波长区的色散值为G.652光纤的1/4〜1/6,因此色散补偿距离也大致为G.652光纤的4〜6倍,色散补偿成本(包括光放大器、色散补偿器和安装调试)远低于G.652光纤。

另外,由于G.655光纤采用了新的光纤拉制工艺,具有较小的极化模色散,单根光纤的极化模色散一般不超过0.05ps/km1/2。

即便按0.1ps/km1/2考虑,这也可以完成至少400km长的40Gbit/s信号的传输。

根据零色散点出现的位置的不同,G.655光纤在1530nm-1565nm的工作区内所呈现的色散值也不同。

零色散点在1530nm以下时,在工作区内色散值为正值,这种正色散G.655光纤适合陆地传输系统使用;零色散点在1565nm以上时,在工作区内色散值为负值,这种负色散G.655光纤适合海底传输系统使用。

四、消除光纤衰减和色散影响的措施

光纤的光传输性能包括:

衰减系数、色散系数、色散斜率、偏振模色散、非线性效应和工作波长范围等。

现在人们十分清楚,不同层次的网络需要不同传输性能的光纤。

4.1基于G.652光纤

G.652光纤在我国已大量敷设,G.652光纤进行扩容主要有两种方法,即波分复用

(WDM方式和时分复用(TDM方式。

利用WD技术在G.652光纤上实现超高速传输是我们的重要选择,而且这种方案越来越受到人们的青睐。

WD克服了色散对高速系统的限制,以2.5Gbit/sxn系统为例,虽然在整个线路上传输的速率是10Gbit/s或20Gbit/s,但每个波长承载的业务只有2.5Gbit/s,这样就大大减轻了对系统色散参数的要求。

采用马赫一曾德尔外调制时,色散受限距离可达1000KM因而我们可以在不采取色散

调节措施的情况下,在常规G.652光纤上开通超高速系统。

除WD技术外,TDM勺10Gbit/s系统也实现了商用化。

在Gbit/s光纤上,即使采用外调制技术,10Gbit/s系统的色散受限距离也只有50KM左右,因而必须采取色散调节措施。

虽然目前色散调节的方法很多,可真正能够实用化的只有色散补偿光纤法(DCF。

这种方法将使系统对色散的限制完全消除,只要在长途传输线路中间断地插入色散补偿光纤,系统就可以采用TDM技术方便地扩

容到10Gbit/s、20Gbit/s甚至40Gbit/s。

这种技术的缺点是DCF带来了较大的插入损耗,需要采用光放大器EDFA予以补偿,整个系统会引入较多的EDFA成本较高,另外DCF本身的价格也比较贵。

到现在为止,对于G.652光缆,几乎所有的大公司都选择NX2.5Gbit/sWDI作为发展策略,在不使用色散补偿手段的情况下方便地进行扩容。

这也可为未来的全光网的发展积累技术,但也有公司认为2.5Gbit/s作为基准速率低了一些,应先采用TDM勺10Gbit/s系统,然后再发展更高速率的WD系统。

但是当前TDM方式费用较大,必须进行色散补偿,而且以后系统再扩容也必须采用WD方式。

4.2基于G.653光纤

较G.652光纤而言,在G.653光纤上运行10Gbit/s及其以上速率系统要简单些,因为1550nm窗口是零色散窗口,这就完全消除了色散限制。

在G.653光纤上进行扩容时,开始

无一例外地要采用TDM方式。

如果只考虑TDM方式扩容,G.653光纤无疑是最好的选择,特别是和外调制器及EDFA相结合,可以达到超长距离的全光传输。

现在G.653光纤面临的一

个挑战是开WD系统的问题,难以开通多路WD系统。

当光纤中有多个波长的信号传播,且信号的强度达到一定程度时,会发生严重的四波混频现象,产生较大的串扰。

当然采用不等间隔波长安排时,也不排除开通8波长以上的波分复用系统,但需要十分精细的设计,而且占用了本来就不富裕的EDFA勺放大带宽。

G.653光纤只是单波长系统的最佳选择,单通道可以直接开通TDM10Gbit/s甚至20

Gbit/s系统,但是G.653光纤限制了未来波分复用的应用。

从发展趋势上看,WD技术在传

输网上的应用是必然的,现在的问题是以哪个速率为基准速率。

在许多国家的网上,已不鼓励使用G.653光纤。

我国也基本上不会再在网上使用这种光纤。

4.3基于G.655光纤

在G.655光纤上运行10Gbit/s或更高速系统比较容易。

由于这类光纤既解决了光纤的线性色散受限问题,又解决了光纤的非线性问题。

因此既可以单波长采用TDM&式直接开通

10Gbit/s甚至20Gbit/s系统,又可以采用WD方式以

2.5Gbit/sxN(N=4,8,16)或10Gbit/sxN(N=4,8)开通高速系统,满足了TDM和WD两种发展方向的要求。

以Lucent的真波光纤为例:

在1540〜1565Nm区间,光纤色散

系数在1.0〜4.0ps/(nm.km),这个值已足以消除四波混频的相位匹配效应,从而基本避免了非线性影响;而低色散系数又不至于对系统造成色散受限。

它既可以开通高速率的10Gbit/s、20Gbit/s的TDMS统,又可以采用WD方式进行扩容。

现在出现的G.655光纤主要有两种,最先出现的是Lucent公司的真波光纤(TrueWaveFiber),它的零色散点在1530Nm以下的短波长区,在1549〜1561Nm这个最常用的EDFA增益平坦区,色散系数为2.0〜3.0ps/(nm.km),这个值已足以消除四波混频的相位匹配效应,从而基本避免了非线性影响;而低色散系数又不至对系统造成色散受限。

据Lucent提供的资料:

即使单波长传输10Gbit/s的TDM系统,其色散受限距离仍可达300km左右。

Lucent的应用中,使用的是色散“正区”,在这一区域,自相位调制效应(SPM可以压缩

脉冲宽度,从而有利于减轻色散的压力。

但是它会带来调制不稳定性(MI—Modulation

Instability),Ml效应随光功率的提高和系统距离的延长而增长。

关于Ml效应有不同的看

法:

一种认为可以用滤波器滤出产生的干扰信号,另一种则认为它是不可克服的缺陷。

但是到现在为止,有关真波光纤陆地WD系统的应用似乎并没出现很大的问题。

几乎与Lucent公司同时,康宁公司也推出了自己的非零色散光纤SMRLS,与真波光

纤不同的是:

它的零色散点处于长波长区1570Nm附近,而在1530〜1565nm光放大器能放大的频谱区域,光纤的色散值都为负值,系统工作于色散“负区”,其中值得我们注意的是:

它在1545nm的典型色散值为-1.5ps/(nm.km),因而在1549〜1560Nmi这一我们最感兴趣的区间,其色散值在一1.0ps/(nm.km)以下,这对通路数大于等于16的波分复用系统不利,

但其允许的色散受限距离要相对长一些。

康宁公司认为选用色散负区的主要原因是:

(1)可以避免MI效应。

⑵当超长链路级联,需要色散补偿时,因SMRLS积累的是负色散,因而采用常规的G.652光纤就可实现,而真波光纤系统则需要价格昂贵的色散补偿光纤DCFSMRLS光纤在越洋海缆中得到较广泛的应用,如中一美海缆系统等。

因为海缆的无电中继距离极长,一般只在登陆站上设立电中继器,而在海里,全部是用光放大器EDFA乍

为中继器,如果采用的系统工作在色散“正区”,MI效应会有很大的积累,因而采用了色散

处于负区的G.655光纤,由于线路的色散为负值,可以采用性能稳定的G.652光纤每隔一段

距离进行一次色散补偿。

从理论上讲,G.655光纤的传输容量目前至少可达到160Gbit/s。

它成功地克服了G.652的色散受限和G.653无法进行波分复用的缺点,升级也比较灵活,既可以先上TDMS

统,也可以先上WD系统,而且不需要其他补偿措施。

在目前业务量需求不大的情况下,可先在非零色散光纤上开通2.5Gbit/s系统,当容量需求增加到一定程度时,我们可以采用WD啲2.5Gbit/sX4(8)或TDM勺10Gbit/s两种方式进行扩容,即使容量需求达到40Gbit/s以上,仍可采用10Gbit/sxnWD技术满足运营者的要求。

五、参考资料:

1、孙学康、张金菊,光纤通信技术,北京邮电大学出版社,2001.3

2、陈永诗等,色散补偿光纤及其应用前景,光通信研究,1994.1

3、戴菜青等,色散补偿光纤及其应用,光通信技术,1996.4

4、张成良,一种新型光纤一G.655光纤,电信技术,1999.3

5、王临堂,单模光纤的标准动态,电线电缆,2001.4

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 初中作文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1