小学数学第十二册综合能力训练.docx

上传人:b****5 文档编号:12015650 上传时间:2023-04-16 格式:DOCX 页数:24 大小:117.50KB
下载 相关 举报
小学数学第十二册综合能力训练.docx_第1页
第1页 / 共24页
小学数学第十二册综合能力训练.docx_第2页
第2页 / 共24页
小学数学第十二册综合能力训练.docx_第3页
第3页 / 共24页
小学数学第十二册综合能力训练.docx_第4页
第4页 / 共24页
小学数学第十二册综合能力训练.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

小学数学第十二册综合能力训练.docx

《小学数学第十二册综合能力训练.docx》由会员分享,可在线阅读,更多相关《小学数学第十二册综合能力训练.docx(24页珍藏版)》请在冰豆网上搜索。

小学数学第十二册综合能力训练.docx

小学数学第十二册综合能力训练

综合能力训练

一、填空题。

1.把下面的“成数”改写成百分数。

五成(   )、七成(   )、三成五(   )、十成(   )

2.把下面的百分数改写成“成数”

30%(   )  45%(   )  10%(   )  95%(   )

3.利息=(   )×(   )×(   )

4.30千克是50千克的(%),50千克是30千克的( %)

5.5吨比8吨少(%),8吨比5吨多(%)。

6.540米是(   )米的20%。

7.(   )公顷的25%是20公顷。

二、判断题。

(对的画“√”,错的画“×”)

1.利息和本金的比率叫利率。

(   )

2.一块地的产量,今年比去年增长二成五,就是增长十分之二点五。

 (   )

3.一种药水,水和药的比是1∶20,水占药水的5%。

  (   )

  (   )

三、选择题。

(把正确答案的序号填在括号里)

1.半成改写成百分数是 (   )

A.50%

B.0.5%

C.5%

2.一块地原产小麦25吨,去年因水灾减产二成,今年又增产二成。

这样今年产量和原产量比 (   )

A.增加了

B.减少了

C.没变

3.小英把1000元按年利率2.45%存入银行。

两年后计算她应得到的本金和利息,列式应是  (   )

A.1000×2.45%×2

B.(1000×2.45%+1000)×2

C.1000×2.45%×2+1000

四、计算题。

五、应用题。

1.一块小麦实验田,去年产小麦24.5吨,今年增产了二成。

这块实验田今年产小麦多少吨?

2.一块地,去年产水稻12吨,因水灾比前年减少二成五。

这块地前年产水稻多少吨?

3.李英把5000元人民币存入银行,定期1年,年利率是2.25%。

到期时,李英应得利息多少元?

4.王钢把10000元人民币存入银行,定期3年,年利率是2.7%。

到期时,王钢应得本金和利息一共多少元?

5.一块棉花地,去年收皮棉30吨,比前年增产了5吨。

这块棉花地皮棉产量增长了几成?

6.一个养殖场,养鸭的只数比养鸡的只数少20%,养的鸡比鸭多1000只。

这个养殖场养鸭多少只?

相遇。

甲车每小时的速度是85千米,乙车的速度是甲车的120%。

A、B两地相距多少千米?

*8.张晶在银行存了30000元人民币,定期五年,年利率是2.88%。

到期时交纳利息所得税20%后,银行应付给张晶本金和利息一共多少元?

(选作)

参考答案

一、

1.50% 70% 35% 100%

2.三成四成五一成九成五

3.本金×利率×时间

4.60%167%

5.37.5%60%

6.2700

7.80

8.4 20 40%

二、1.√ 2.√ 3.× 4.×

三、1.C 2.B 3.C

五、

1.24.5×(1+20%)=29.4(吨)

2.12÷(1-25%)=16(吨)

3.5000×2.25%=112.5(元)

4.10000×2.7%×3+10000=10810(元)

5.5÷(30-5)=20%,增长2成。

6.1000÷20%×(1-20%)=4000(只)

或1000÷20%-1000=4000(只)

8.30000×2.88%×5×(1-20%)+30000=33456(元)

综合能力训练 

一、填写(   )的内容。

1.表示两个比相等的式子叫做(   )。

2.0.32∶1.6化成最简单的整数比是(   ),比值是(   ),根据这个比值组成一个比例式另一个比是(   ),比例式是(   )。

10和60,这个比例是(   )。

4.被减数是72,减数和差的比是4∶5,减数是(   )

5.因为a×b=c,当a一定时,b和c(   )比例。

当b一定时,a和c(   )比例。

当c一定时,a和b(   )比例。

6.用20的约数组成一个比例式是(   )。

一个外项是(   ),这个比例式是(   )。

应画(   )厘米。

9.在绘画时,要把实际距离缩小500倍,使用的比例尺应该是(   )。

二、分析判断。

(对的画“√”,错的画“×”)

1.一般地图上用的比例尺是缩小比例尺。

 (   )

2.圆的直径和它的面积成正比例。

(   )

3.y=5x,x和y成反比例。

  (   )

4.数a与数b的比是5∶8,数a是75,数b是120。

(   )

   (   )

三、分析选择。

将正确答案的序号填在(   )里。

1.甲乙两个圆半径的比是2∶1,那么甲和乙两个圆的面积的比是 (   )

(1)4∶1

(2)2∶1

(3)4∶2

2.把一个圆柱体加工成一个与它等底等高的圆锥体,圆柱的体积与去掉部分的体积的比是(   )

(1)3∶1

(2)3∶2

(3)2∶3

3.在一个比例式中,两个比的比值都等于3,这个比例式可以是  (   )

(1)3∶1=1∶3

(2)3∶1=0.3∶0.1

(3)9∶3=3∶1

4.修一条路,已修的是未修的80%,已修的与未修的比是  ?

(   )

(1)80∶100

(2)4∶5

(3)10∶8

刘师傅现在与过去工作效率的比是 (   )

(2)1∶3

(3)3∶1

四、观察分析。

1.将下面的等式改写成比例式。

(1)10.2×9=1.8×51

(3)51×7=17×21

(4)62a=47b

2.认真观察下面每题的解是否正确?

对的画“√”,错的改正过来。

(1)15.6∶2.8=2.4∶x

五、说说下面各题的两种相关联的量是成正比例,还是成反比例。

写出说理过程。

1.小麦的重量一定,面粉和出粉率。

2.图上距离一定,比例尺和实际距离。

3.先判断,再填空。

3a=b a和b成(   )比例。

六、选择正确算式,并说出理由。

1.一辆汽车从甲地开往乙地,每小时行驶28千米,4.5小时到达,要4小时到达,每小时要多行几千米?

(1)28×4.5÷4-28

(2)解:

设每小时多行x千米。

28×4.5=(28+x)×4

(3)解:

设每小时多行x千米。

28×4.5=28×4+x

(4)28-28×4.5÷4

2.东风洗染厂,每天用水量比过去节约20%,原有390吨水,现在比过去多用30天,现在每天用水多少吨?

(1)390×(1-20%)÷30

(2)解:

设现在每天用水x吨。

390×20%=30x

(3)解:

设过去用x天,则现在用(x+30)天。

390÷(120+30)=2.6(吨)

(4)390×20%÷30

七、解决下面的实际问题。

1.一幅地图用0.6厘米表示实际距离30千米,求这幅地图的比例尺。

用线段比例尺表示出来。

2.张庄和王村相距960千米,要在两村间修筑一条笔直的马路,画在设计图上的距离是

这幅设计图的比例尺是多少?

这样可以提前几天完成?

(用三种你认为简捷的方法解答)

4.一块平行四边形菜地,底与高的和是150米,它们的比是3∶2,求这块菜地的面积是多少平方米?

*5.甲乙两地相距800千米,A、B两辆汽车分别从两地同时相向而行,已知A、B两车速度比是6∶5,当两车相遇时,两车各行多少千米?

(用三种方法解答)

参考答案

一、

1.比例

3.10∶30=20∶60

4.32

5.正正反

二、1.√ 2.× 3.× 4.√ 5.√

三、1.

(1) 2.

(2) 3.

(2) (3) 4.

(2) 5.(3)

2.

(1)× 

(2)√ (3)√ (4)×

五、1.正比例 2.反比例 3.正(表略)

六、

1.

(1) 

(2)

2.

(2) (3) (4)

七、

1.

2.1∶19200000

3.方法1 30-8÷5=10(天)

方法3解:

设实际x天完成。

(把一份稿件看为“1”)

综合能力训练

一、将正确答案填在(   )里。

1.从圆锥的(   )到(   )的距离是圆锥的高,圆锥有(   )条高。

2.圆柱的体积是(   )的圆锥体积的3倍,所以圆锥体积的公式是(   )。

3.把4个同样大小的圆柱,熔铸成等底等高的圆锥,能熔铸(   )个。

4.一个圆柱的体积是60立方厘米,和它等底等高的圆锥的体积是(   )。

5.把一段圆柱形圆木,加工成等底等高的圆锥体,削去部分体积是圆柱体积的(   ),是圆锥的(   )。

6.用一张长是25.12厘米,宽3.14厘米的长方形厚纸板围成直圆柱,有(   )种围法;其中一种围成的圆柱的高是(   )厘米,直径是(   )厘米;另一种围的圆柱的高是(   )厘米,直径是(   )厘米。

二、观察思考下面的解题过程和结果,是否正确?

1.一根圆柱形水管,内直径20厘米,水流的速度是每秒4米,这个水管1分钟可以流过多少立方米的水?

解:

(1)圆柱形水管的底面积

(2)圆柱形水管的容积(4米相当圆柱的高)

314×400=125600(立方厘米)

(3)1分钟可以流过多少水

125600×60=7536000(立方厘米)

7536000立方厘米=7.536立方米

答:

这个水管1分钟可以流过7.536立方米水。

2.有一根长20厘米,半径为2厘米的圆钢,在它的两端各钻了一个深为4厘米,底面半径为2厘米的圆锥形小孔做成一个零件,如图这个零件的体积是多少立方厘米?

解:

(1)圆柱的底面积

2×2×3.14=12.56(平方厘米)

(2)圆柱的体积

12.56×20=251.2(立方厘米)

(3)圆锥形小孔的体积

12.56×4=50.24(立方厘米)

(4)零件的体积

251.2-50.24=200.96(立方厘米)

答:

这个零件的体积是200.96立方厘米。

3.一个高3分米,底面直径为20厘米的圆柱形水桶里装满水,水中放着一个底面直径为18厘米,高为15厘米的铁质圆锥体,当这个铁质圆锥体取出后,会发生怎样的变化?

结果如何?

解:

当这个铁质圆锥体取出后,桶内水面要降低,因为这个物体原来占据了一些空间,结果怎样,就要先求圆锥体的体积,再求变化的结果。

(1)圆锥的底面积

(2)圆柱的底面积

(3)圆锥的体积

(4)水面降低的米数

1271.7÷314=4.05(厘米)

三、综合运用知识解决实际问题。

1.有A、B两个容器,如图,先把A容器装满水,然后将水倒入B容器,B容器中水的深度是多少厘米?

*2.如右图,是一个棱长为4分米的正方体零件,它的上、下、左、右面上各有一个半径为2厘米的圆孔,孔深为1分米,这个零件的表面积是多少?

体积是多少?

*3.把一个直径是2分米的圆柱的底面分成许多相等的扇形,然后沿直径把圆切开,拼成一个和它体积相等的长方体,这个长方体表面积比原来圆柱的表面积增加8平方分米,这个长方体的体积是多少?

*4.如图,这顶帽子,帽顶部分是圆柱形,用花布做的,帽沿部分是一个圆环,也是用同样花布做,已知帽顶的半径,高和帽沿宽都是1分米,那么做这顶帽子至少要用多少平方分米的花布?

*5.把一个长7厘米,宽6厘米,高4.5厘米的长方体铁块和一个棱长5厘米的正方体的铁块,熔铸成一个大圆柱体,这个圆柱体的底面积是78.5平方厘米,那圆柱的高应是多少厘米?

参考答案

一、

1.顶点底面圆心 1。

3.12

4.20立方厘米

6.2,25.12厘米,1厘米,3.14厘米,8厘米

二、1.正确 2.错误 3.正确

2.提示:

正方体零件的表面积增加了4个小圆柱的侧面积。

正方体零件的体积减少了4个小圆柱的体积。

表面积:

4×4×6×100+3.14×2×2×10×4=10102.4(平方厘米)

体积:

4×4×4×1000-2×2×3.14×10×4=63497.6(立方厘米)

3.提示:

表面积增加8平方分米,实际是两个以半径为宽,高为长的长方形。

8÷2÷(2÷2)=4(分米)高

3.14×(2÷2)2×4=12.56(立方厘米)或

8÷2×3.14×2÷2=12.56(立方厘米)

4.18.84平方分米

5.4厘米

综合能力训练

一、看表填空。

1.建华小学六年级学生参加植树活动各班出勤情况如下:

一班:

应到42人,实到42人。

二班:

应到45人,实到44人。

三班:

应到40人,实到38人。

四班:

应到50人,实到49人。

完成下面的统计表。

2.在(   )中填上适当的数。

(1)1994年~1996年某地区三年内工业总产值占工农业总产值的(   )%

(2)1995年的农业总产值占当年工农业总产值的(   )%。

(3)1996年的工业产值比1994年工业产值增长(   )万元。

(4)1996年的工农业总产值比1995年工农业总产值增长(   )%

二、看图填空。

1.

(1)(   )月份的产量最高,是(   )吨。

(2)(   )月份的产量最低,是(   )吨。

(3)下半年的月平均产量是(   )吨。

(4)这是(   )统计图。

(5)9月份的产量比八月份的产量增长了(   )%

2.

(1)这是(   )统计图,它不但可以表示(   )的多少,而且能够清楚地表示数量(   )的情况。

(2)第(   )季度产值最高,它比第三季度增产(   )%。

(3)全年总产值是(   )万元

(4)下半年完成总产值的(   )%。

(5)下半年比上半年产值增加了(   )%。

三、看图列式解答。

(1)下半年平均每月产糖(   )吨(保留整数)。

(2)第四季度比第三季度增产(   )%。

(3)8月份的产量比7月份增产(   )%。

(4)12月份的产量占下半年产量的(   )%。

(5)第三季度的产量占下半年产量的(   )%。

(6)10月份的产量占下半年产量的(   )%。

参考答案

一、1.

2.

(1)60.7 

(2)39.7 (3)850 (4)13.4

二、1.

(1)12、26 

(2)7、12 (3)20 (4)条形 (5)11.8

2.

(1)折线数量增减变化 

(2)第四季度 50 (3)83

(4)60.2 (5)51.5

三、

(1)262 

(2)70.7 (3)33.3 (4)23.6 (5)36.9 (6)19.1

综合能力训练

一、填空。

1.4.12小时=(   )分

(   )个这样的分数单位就是最小的质数。

3.十一亿六千零二十万,写作(   ),把它改写成用亿作单位的数是(   )。

4.圆周率一定,圆的周长和它的直径成________比例。

6.18的约数有(   ),选出其中的四个数组成一个比例,比例是(   )。

8.有一个小数,先将它的小数点向左移动两位后,再扩大1000倍得40.3,原来的小数是(   )。

9.一个圆锥体的体积是40立方厘米,比与它等底的圆柱体小20立方厘米,如果圆锥高10厘米,圆柱的高是(   )厘米。

来它的分子分母的和是28,这个分数是(   )。

二、选择正确答案填在(   )里。

1.a·a可以写作(   )

①2a

②a2

③a+a

用42分钟,乙行这段路用________分钟。

  (   )

①30

②36

③49

   (   )

①2∶3

②3∶4

③3∶2

4.7是21和42的  (   )

①质因数

②公约数

③最大公约数

两堆煤的重量比是   (   )

①5∶3

②4∶5

③2∶5

三、判断。

(对的画“√”,错的画“×”)

1.一个圆的半径是3厘米,它的周长和面积相等。

  (   )

  (   )

3.去掉小数点后面的“0”,小数的大小不变。

 (   )

4.12不能被8整除,但能被8除尽。

 (   )

5.真分数都是最简分数。

(   )

   (   )

7.六年级同学参加植树劳动,出勤100人,缺勤3人,缺勤率是3%。

(   )

8.一幅地图,图上距离5厘米表示实际距离5千米,这幅地图的比例尺是1∶100000。

  (   )

四、求未知数x。

五、计算下面各题,能简算的要简算。

1.19175÷59+678

2.36.5×1.4-8.51÷3.7

六、按要求列式计算。

七、选择正确的算式填在(   )里。

1.生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务。

这批零件共有多少个?

如果设这批零件共x个。

正确的算式是 (   )

③12x=124×3

2.菜市场有黄瓜150千克,黄瓜重量和西红柿重量的比是3∶5,黄瓜重量比西红柿少多少千克?

正确的算式是 (   )

①150÷3×5

②150÷3×5-150

③150÷3×(5-3)

八、应用题。

1.一桶油,用去20%,还剩32千克,这桶油原有多少千克?

2.一堆煤,原计划每天烧450吨,10天烧完。

实际只用9天就烧完了,每天烧多少吨?

(用算术和比例两种方法解)

3.量出计算阴影面积所需数据(量得结果取整厘米数并写在图上),再计算出阴影部分面积。

4.下面是五(4)班一次数学测验情况统计图,请看图回答问题。

回答后再试着提出几个问题,请同伴回答。

(1)达到良以上的共(   )人,占全班人数的(   )%。

(2)优秀的有(   )人,占全班人数的(   )%。

(3)达标的有(   )人,占全班人数的(   )%。

合唱队调出6人到田径队,则合唱队与田径队人数的比是3∶4,合唱队原有多少人?

6.两辆汽车分别从AB两地同时出发,在距中点40千米处相遇,甲行全程需10小时,乙行全程需15小时。

求AB两地距离。

(用多种方法解答)

参考答案

一、

1.247.2 1 6250

3.1160200000 11.602亿

4.正

5.2∶3

6.1 2 3 6 9 18 3∶9=2∶6

8.4.03

二、1.a2 2.49 3.3∶2 4.公约数 5.5∶3

三、1.× 2.√ 3.× 4.√ 5.×6.×7.×8.√

四、1.x=2 2.x=1

八、

1.32÷(1-20%)=32÷80%=40(千克)

2.450×10÷9=500(吨)

解:

设每天烧x吨。

450×10=9x

x=500

3.解:

底6厘米,高3厘米

6×3÷2=9(平方厘米)

4.40 80 5 10 10 20

(2)解:

10∶15=2∶3

40×2÷(3-2)×(3+2)=400(千米)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 外语学习 > 英语考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1