#M序列产生及其特性仿真实验评测报告.docx

上传人:b****5 文档编号:11784001 上传时间:2023-04-01 格式:DOCX 页数:15 大小:229.07KB
下载 相关 举报
#M序列产生及其特性仿真实验评测报告.docx_第1页
第1页 / 共15页
#M序列产生及其特性仿真实验评测报告.docx_第2页
第2页 / 共15页
#M序列产生及其特性仿真实验评测报告.docx_第3页
第3页 / 共15页
#M序列产生及其特性仿真实验评测报告.docx_第4页
第4页 / 共15页
#M序列产生及其特性仿真实验评测报告.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

#M序列产生及其特性仿真实验评测报告.docx

《#M序列产生及其特性仿真实验评测报告.docx》由会员分享,可在线阅读,更多相关《#M序列产生及其特性仿真实验评测报告.docx(15页珍藏版)》请在冰豆网上搜索。

#M序列产生及其特性仿真实验评测报告.docx

#M序列产生及其特性仿真实验评测报告

M序列产生及其特性仿真实验报告

一、三种扩频码序列简介

1.1m序列

它是由多级移位寄存器或其他延迟元件通过线性反馈产生的最长的码序列。

m序列的特性

1、最长周期序列:

N=2n-1

2、功率平衡性:

‘1’的个数比‘0’的个数多1

3、‘0’、‘1’随机分布:

近似高斯噪声

4、相移不变性:

任意循环移位仍是m序列,仅初相不同

5、离散自相关函数:

‘0’->+1,‘1’->-1

1.2Gold序列

Gold序列是两个等长m序列模二加的复合序列

两个m序列应是“优选对”

特点:

1、包括两个优选对m序列,一个Gold序列族中共有2n+1个Gold序列

2、Gold序列族中任一个序列的自相关旁瓣及任意两个序列的互相关峰值均不超过两个m序列优选对的互相关峰值

1.3OVSF序列

又叫正交可变扩频因子,系统根据扩频因子的大小给用户分配资源,数值越大,提供的带宽越小,是一个实现码分多址(CDMA>信号传输的代码,它由Walsh函数生成,OVSF码互相关为零,相互完全正交。

OVSF序列的特点

1、序列之间完全正交

2、极适合用于同步码分多址系统

3、序列长度可变,不影响正交性,是可变速率码分系统的首选多址扩频码

4、自相关性很差,需与伪随机扰码组合使用

2、三种扩频码序列产生仿真

一、M序列的产生代码:

X1=1。

X2=0。

X3=1。

X4=0。

%移位寄存器输入Xi初T态<0101),Yi为移位寄存器各级输出

m=60。

%置M序列总长度

fori=1:

m%1#

Y4=X4。

Y3=X3。

Y2=X2。

Y1=X1。

X4=Y3。

X3=Y2。

X2=Y1。

X1=xor(Y3,Y4>。

%异或运算

ifY4==0

U(i>=-1。

else

U(i>=Y4。

end

end

M=U

%绘图

i1=i

k=1:

1:

i1。

plot(k,U,k,U,'rx'>

xlabel('k'>

ylabel('M序列'>

title('移位寄存器产生的M序列'>

用阶梯图产生表示:

X1=1。

X2=0。

X3=1。

X4=0。

%移位寄存器输入Xi初T态<0101),Yi为移位寄存器各级输出

m=60。

%置M序列总长度

fori=1:

m%1#

Y4=X4。

Y3=X3。

Y2=X2。

Y1=X1。

X4=Y3。

X3=Y2。

X2=Y1。

X1=xor(Y3,Y4>。

%异或运算

ifY4==0

U(i>=-1。

else

U(i>=Y4。

end

end

M=U

%绘图

stairs(M>。

二、GOLD序列的产生:

M序列A的生成:

X1=1。

X2=0。

X3=1。

X4=0。

%移位寄存器输入Xi初T态<1010),Yi为移位寄存器各级输出

m=60。

%置M序列总长度

fori=1:

m%1#

Y4=X4。

Y3=X3。

Y2=X2。

Y1=X1。

X4=Y3。

X3=Y2。

X2=Y1。

X1=xor(Y3,Y4>。

%异或运算

ifY4==0

A(i>=0。

else

A(i>=Y4。

end

end

M=A

%绘图

i1=i

k=1:

1:

i1。

plot(k,A,k,A,'rx'>

xlabel('k'>

ylabel('M序列'>

title('移位寄存器产生的M序列'>

M序列B的生成:

X1=0。

X2=1。

X3=0。

X4=1。

%移位寄存器输入Xi初T态<0101),Yi为移位寄存器各级输出

m=60。

%置M序列总长度

fori=1:

m%1#

Y4=X4。

Y3=X3。

Y2=X2。

Y1=X1。

X4=Y3。

X3=Y2。

X2=Y1。

X1=xor(Y3,Y4>。

%异或运算

ifY4==0

B(i>=0。

else

B(i>=Y4。

end

end

N=B

%绘图

i1=i

k=1:

1:

i1。

plot(k,B,k,B,'rx'>

xlabel('k'>

ylabel('M序列'>

title('移位寄存器产生的M序列'>

生成gold序列:

c=xor(A,B>。

stairs(c>。

三、OVSF序列的产生:

%Function[OVSF_Codes]=OVSF_Generator(Spread_Fator,Code_Number>

%Code_Number=-1表示生成所有扩频因子=Spread_Factor的ovsf码

Code_Number=-1。

Spread_Fator=8。

OVSF_Codes=1。

ifSpread_Fator==1

return。

end

fori=1:

1:

log2(Spread_Fator>

Temp=OVSF_Codes。

forj=1:

1:

size(OVSF_Codes,1>

ifj==1

OVSF_Codes=[Temp(j,:

>,Temp(j,:

>Temp(j,:

>,(-1>*Temp(j,:

>]。

else

OVSF_Codes=[OVSF_CodesTemp(j,:

>,Temp(j,:

>Temp(j,:

>,(-1>*Temp(j,:

>]。

end

end

end

%ifCode_Number>-1

%OVSF_Codes=OVSF_Codes((Code_Number+1>,:

>。

%end

figure(3>

[b4,t4]=stairs([1:

length(OVSF_Codes>],OVSF_Codes>。

plot(b4,t4>。

axis([0130-1.11.1]>。

title('OVSF序列'>

三、三种扩频码序列特性仿真

<一)M序列自相关函数

X1=1。

X2=0。

X3=1。

X4=0。

%移位寄存器输入Xi初T态<0101),Yi为移位寄存器各级输出

m=2^8-1。

%置M序列总长度

fori=1:

m%1#

Y4=X4。

Y3=X3。

Y2=X2。

Y1=X1。

X4=Y3。

X3=Y2。

X2=Y1。

X1=xor(Y3,Y4>。

%异或运算

ifY4==0

U(i>=-1。

else

U(i>=Y4。

y=xcorr(U>。

stairs(y>。

end

互相关函数:

输入两个m序列

clc

clearall

closeall

m1=[010011001010100110110001]

m2=[101011100111001010011101]

y=xcorr(m1,m2,'unbiased'>。

stairs(y>

<二)Gold码的自相关函数

x2=[(2*c>-1]。

%将运行结果Gold序列c从单极性序列变为双极性序列

y1=xcorr(x2,'unbiased'>。

%求自相关性

stairs(y1>。

grid

xlabel('t'>

ylabel('相关性'>

title('移位寄存器产生的Gold序列的相关性'>

互相关性

gold序列和m序列的互相关性

y1=xcorr(c,m1,'unbiased'>。

stairs(y1>。

(3)ovsf码的互相关和自相关

a=[1-111-11-1-1]。

b=[1-1-111-1-11]。

P=length(a>。

%求序列a的自相关函数

Ra(1>=sum(a.*a>。

fork=1:

P-1

Ra(k+1>=sum(a.*circshift(a,[0,k]>>。

end

%求序列b的自相关函数

Rb(1>=sum(b.*b>。

fork=1:

P-1

Rb(k+1>=sum(b.*circshift(b,[0,k]>>。

end

%求序列a和b的互相关函数

Rab(1>=sum(a.*b>。

fork=1:

P-1

Rab(k+1>=sum(a.*circshift(b,[0,k]>>。

end

x=[0:

P-1]。

figure(9>

subplot(3,1,1>。

stem(x,Rab>。

ylabel('a和b的互相关函数'>。

axis([0P-1-1012]>。

grid。

xlabel('偏移量'>。

subplot(3,1,2>。

stem(x,Ra>。

ylabel('a自相关函数'>。

xlabel('偏移量'>。

%axis([0P-1-530]>。

subplot(3,1,3>。

stem(x,Rb>。

%plot(x,Rb>

xlabel('偏移量'>。

ylabel('b的自相关函数'>。

4、总结

一、M序列自相关函数近似于冲激函数的形状,不同序列间的互相关特性一致性不好。

二、Gold序列的自相关特性略差于m序列,但互相关特性优于m序列

三、OVSF序列之间完全正交,即互相关性很好,因此极适合用于同步码分多址系统,但自相关性很差。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1