二.空燃比确定
1998.11.21版本2软件
空燃比确定概述3
初始脉宽4
拖动模式下的空燃比控制7
正常拖动模式下的空燃比7
淹缸情况下的空燃比10
拖动到运转的过渡过程11
运转过程中的空燃比13
动力加浓空燃比18
空燃比确定概述
(缺内容)
初始脉宽
功能:
尽可能快地供给燃料湿润进气歧管以缩短拖动时间
描述:
初始脉宽通过查二维表FPRMBPW得到,作为冷却液温度的函数,这时是同时向所有的气缸供给燃料,不需要系统进行同步。
这就使早期的燃料供给能够缩短拖动时间。
当初始脉宽给出之前系统需要一个机会来建立燃料压力。
FPRMTMR(以冷却液温度为坐标的二维表)给出了这一延迟时间。
在一个ECM没有断电的延迟之后,除非发动机已经运行了KPFPENTM秒,否则不给出初始脉宽。
标定参数:
FPRMTMR[0-2秒]
一旦油泵启动,一个给出初始脉宽前的延迟记时就开始计时。
(以冷却液温度为坐标的二维表)
FPRMBPW[0-2毫秒]
初始脉宽-冷却液温度。
KPFPENTM[0-65536秒]
在一个延迟后(ECM不断电)给出初始脉宽,前提是发动机至少已经运转了这么长时间。
FPRMTMR(时间-冷却液温度的二维表)
这个表用来补偿燃油泵启动到油压在油轨中稳定中的延迟时间的最坏情况。
标定步骤:
1.标定FPRMBPW到0
2.标定K_Crank_AF_vs_Coolant_2D到25
3.当燃油系统内的油压降低后在几个冷却液温度下启动发动机,用STRIPCHART?
测量从油泵启动到油轨内的压力达到可接受水平的时间,这个值通常在名义值附近。
特殊事项
如果FPRMTMR太短,将导致启动时不稳定?
如果FPRMTMR太长,将导致不必要的过长的拖动时间。
典型数值(附表)
FPRMBPW
以冷却液温度为坐标的初始脉宽表
标定步骤
1.设置FPRMBPW为0
2.标定K_Crank_AF_vs_Coolant_2D使发动机能以尽可能干净和一致的尽可能稀的空燃比来启动。
通常部分火焰是混合气过稀的迹象。
3.标定FPRMBPW以在不影响发动机转速上升的情况下减少拖动时间。
4.标定KPFPENTM使在最冷的环境要求下在一个强制延迟之后不至发生由于燃料喷射过多而造成的火花塞被淹。
特殊需要考虑的事项
在特别低的温度下,要确保初始脉宽时间不要太长。
在一些特殊的控制策略下有火花塞被淹的危险(例如曲轴强制拖动的情况下延迟重新启动?
)
典型数值(附表)
拖动期间空燃比
正常拖动期间空燃比
叙述:
在正常的拖动阶段以下这些标定参数很重要:
K_Crank_AF_vs_Coolant_2D这一表格返回拖动期间的空燃比-水温?
这一表格和偏移量KCAFTI共同确定精确的拖动期间的空燃比。
在一些特殊的情况下这个偏移量每KCFTM秒在K_Crank_AF_Decay_Delta_Ctr参照事件后被K_Crank_AF_Tout_Decay_Percent(0-1的乘子)衰减。
冷却液温度越低,则拖动期间空燃比应该越低以保证燃烧室内具有可燃混合气。
标定参数
K_Crank_AF_vs_Coolant_2D[AF0-25.5]
拖动期间空燃比——冷却水温度
KCAFTI[AF0-25.5]
初始拖动空燃比衰减偏移量?
K_Crank_AF_Decay_Delta_Ctr
拖动空燃比衰减前的参考脉冲数
K_Crank_AF_Tout_Decay_Percent(0-1)
时间到后拖动空燃比衰减乘子
KCFTM[0-32秒]
拖动空燃比延迟DELTA时间
标定步骤
1.标定节气门闭VE表,MAT,MAP滤波器,期望的空气流量(在速度密度系统里)和BPT(基本脉宽项)
2.设置FPRMBPW到0和强制怠速BLM值为128
3.设置KCAFTI初始值为空燃比2.5
4.设置K_Crank_AF_Tout_Decay_Percent为90%
5.设置KCFTM初始值为0.4秒
6.设置K_Crank_AF_Decay_Delta_Ctr初始值为8个计数
7.标定K_Crank_AF_vs_Coolant_2D使发动机能以尽可能稀的空燃比干净和稳定地启动(一般部分火焰?
是过稀的表现)。
在高些的冷却水温度下启动,注意:
稳定,干净的转速上升(没有“doubleflair”)和拖动时间。
8.标定FPRMBPW和FPRMTMR和检验整个温度范围。
在整个拖动期间,拖动空燃比趋向于K_Crank_AF_vs_Coolant_2D减去KCAFTI。
因此在最冷的环境下标定K_Crank_AF_Decay_Delta_Ctr要求参考事件的数值要和运转的燃料情况吻合。
在+-0.5到4秒(根据冷却液温度)之后,标准通常被设定为运转燃料标志吻合(RPM>KFUELUPforKRUNFCTR事件)同时空燃比开始从拖动空燃比混合进入初始的运转空燃比。
在某些情况下拖动阶段由于某些问题而变长(例如火花塞污秽或者损坏),?
KCAFTI偏移到K_Crank_AF_vs_Coolant_2D,开始在每KCFTM时间使用K_Crank_AF_Tout_Decay_Percent作为乘子开始衰减直到0。
这两个参数的标定应该使这一过程在没有太大的空燃比变化的情况下进行。
标定KCAFTI将在一些有问题(长时间的拖动)的情况下减少拖动时间大约60%。
因此KCAFIT应该是K_Crank_AF_vs_Coolant_2D在车辆能够启动的最低温度节点(如-20摄氏度)上给出的空燃比的+-60%。
请参考那些在前面的程序里面已经验证为能够正常工作的典型数值。
在一个非常困难的冷启动环境里,环境温度可能非常低(如-30摄氏度),上面提到的标定策略可能会有细小的不同。
在这种情况下,应该考虑选择大些的KCFTI和开始在正常拖动期间晚一些衰减这一偏移量,这将允许比较大的“初始负荷?
”从而导致比较快的“第一次发火”而不致给发动机过度供油,不过这也导致难以给所有的启动情况作出合适的标定。
在极端高的温度情况下(冷却液温度大于116摄氏度),应该考虑将拖动空燃比稍微标浓些,以增加新油量来防止喷油器内发生气阻。
在通常情况下:
根据温度标定数据表应该具有一条比较光滑的曲线,不要发生陡峭的变化
进一步来说,应该使点火标定使正确的,特别是在较低的冷却液温度值的节点上。
特殊事项:
通常,对于所有的空燃比标定,特别注意“稀的”PLV系统(产物限值确定),但是也要确认“浓的”PLV一套组分?
同时还要在几辆车上确定一下拖动期间的空燃比,以改善排放性能。
K_Crank_AF_vs_Coolant_2D可以在20度冷却水温度附近标定为相对较稀。
但是要注意这样做不能过分增加启动时间和降低启动质量。
典型数值:
附表
K_Crank_AF_vs_Coolant_2D
KCAFTI:
2.0-3.2A/F
K_Crank_AF_Decay_Delta_Ctr:
8-12参考事件
K_Crank_AF_Tout_Decay_Percent:
0.85-0.95
KCFTM:
0.4-0.5秒
清除淹缸的空燃比
叙述:
由于一些问题发生了过度供油的情况(例如;火花塞损坏),需要通过是TPS在一个标定过的限值KAFCFTA之上以给出一个非常稀的空燃比。
这将能清除燃烧室内的存油为另一次启动做准备。
标定参数:
KAFCF[0-25.5A/F]
清除淹缸空燃比
KAFCFTA[0-100%]
清除淹缸节气门限值
标定步骤:
1.标定KAFCF尽可能稀(例如空燃比25.5)
2.标定KAFCFTA足够高以防止清除淹缸模式在正常的拖动期间起作用,但是不要太高,否则驾驶员可能会在启动清除淹缸模式的时候遇到问题。
典型数值
KAFCF:
25.5
KAFCFTA:
75%
拖动到运转的过渡过程
叙述:
在拖动阶段之后空燃比上升,以增加混合物扰动和增加歧管真空度。
所以一旦运转标志设置(RPM>KFUELUPforKRUNFCTRREF.),空燃比将开始从那个时刻开始混合起来过渡(通常是K_Crank_AF_vs_Coolant_2D-KCAFTI),为F56-F51。
这个混合过程将在以下的间距下进行:
K_Crank_Run_AF_Blend_Reduce_2D秒带一个乘子K_Crank_Run_AF_Blend_Mult(0-1)。
这个混合过程使从拖动阶段到发动机正常运转阶段产生平滑的过渡。
标定参数:
KFUELUP[0-3187.5RPM]
声明应进行“运转供油”在RPM>KFUELUPforKRUNFCTRREF.事件后。
KRUNFCTR[0-255CTS]
在RPM比KFUELUP高的期间内开始声明进入运转供油的参考事件数。
K_Crank_Run_AF_Blend_Reduce_2D[0-8秒]
拖动到运转空燃比混合减少间隔-冷却液温度
K_Crank_Run_AF_Blend_Mult[0-1乘子]
拖动到运转的空燃比混合衰减因子
标定步骤
混合过程应该标定为在给出空燃比没有发生陡峭地变化时使混合过程尽可能地快(避免运转过程过浓)。
在一些情况下混合被标定得太快了,将发生一个延迟。
空燃比变化的步长应该尽可能地小(K_Crank_Run_AF_Blend_Mult接近1)以使过渡过程平滑。
混合过程将在K_Crank_Run_AF_Blend_Reduce_2D秒的间隔内完成,这个参数是冷却水温度的函数:
在拖动空燃比和初始空燃比之间的差值在较低的冷却液温度下很大(典型的有5-6),比较而言,较高的温度下差值要小(典型的为0.5-1),作为冷却液温度的函数,K_Crank_Run_AF_Blend_Reduce_2D使整个温度范围内的过渡过程变得平滑。
特殊需要考虑的问题:
通常,在启动期间转速上升的品质依赖于拖动到运转的过渡过程中的空燃比的确定:
太浓的混合气是由于太慢的过渡过程,通常会引起doubleflare?
反之太快的过渡过程引起停转或延迟。
典型数值:
K_Crank_Run_AF_Blend_Mult:
0.85-0.95
K_Crank_Run_AF_Blend_Reduce_2D:
附表
运转空燃比
叙述:
启动计时结束后(?
timedout)运行的开环空燃比由F56表确定(AF-冷却水温度和MAP)。
F51(偏移量对应于F56中的空燃比-冷却水温度)提供了一个指向这个表的偏移量以使系统在启动时能够加浓。
F56减去F51是初始运转的空燃比。
偏移量F54由K_Fuel_AF_Tout_Decay_Percent乘子(0-1)和F52计时衰减间隔表对冷却水温度表来逐渐衰减。
F56,F51,F52具有C版本用于发动机启动和暖机(典型排放),F56和F51具有D版本用于冷启动情况。
F52D存在但是名称为K_Run_Tout_AF_Decay_Delay_2D。
KF56DCLL是冷却液温度限值,当低于这个限值时使用D表并且冷机标志被设置。
当高于KF56DCLL摄氏度时使用C表,如果冷机标志被设置了的话则理论空燃比闭环供油将在K_Fuel_AF_Cold_Engine_Thres被使能,否则在K_Fuel_AF_Hot_Engine_Thres,理论空燃比是K_Stoich_AF.
标定参数:
K_Fuel_AF_Tout_Decay_Percent[0-1]
运转空燃比计时结束?
衰减乘子
F52C[0-2秒]
当使用F56C时运转计时结束后初始AF衰减间隔
K_Run_Tout_AF_Decay_Delay_2D
运转计时结束空燃比衰减间隔,这一个表是运转计时结束空燃比初始值
F51C[0-32秒]
当使用F56C表时候计时结束后运转空燃比初始值
F51D[0-32秒]
当使用F56D表时候计时结束后运转空燃比初始值
F56C[0-25.5AF]
(排放)发动机空燃比对冷却液温度
F56D[0-25.5AF]
冷机空燃比对冷却液温度
KF56DCLL[-40.5-151摄氏度]
冷却水温度限值,在这个限值下,使用F56D表同时冷机标志被设置
K_Fuel_AF_Cold_Engine_Thres
使用F56D表时的A/F冷却液温度限值
K_Fuel_AF_Hot_Engine_Thres
没有使用F56D表时的A/F冷却液温度限值
K_Stoich_AF
理论空燃比
标定步骤:
最开始C版本和D版本的表应该标定为同样的数值
1.在已经完全暖机的情况下标定F56表,在低MAP情况下(怠速部分负荷给出的空燃比在理论空燃比附近14.6),反之在较高的负荷(MAP>60kpa)时可以给出一个较浓的空燃比(13-13.5)以保证驾驶性能。
然后逐渐地降低空燃比对冷却水温度当冷却水温度低于20摄氏度时。
2.标定F51表,给出的初始运转空燃比使发动机在LBT上运转(在一个-20摄氏度的冷启动后这个数值应该是12-13,用线形氧传感器或宽范围氧传感器测量)
3.在从F51表到0的计时过程中,保持LBT。
这将使驾驶性能标定变得容易些(过渡工况供油等等)。
在一些情况下计时过程空燃比可能被标定得过稀,例如letoff's?
将非常难以标定。
所以乘子K_Fuel_AF_Tout_Decay_Percent应该被标定为接近1(0.9),F52表应该被标定为能使计时过程中的过渡过程比较平滑。
4.标定F56C表,从+20摄氏度到+-55摄氏度?
在发动机能够容忍的程度下尽量稀。
5.如果F56C表的变稀造成初始运转空燃比过稀,则标定偏移量F51C为一个比较大些bigger的空燃比以补偿。
6.在发动机允许的情况下将F52C表标得尽可能快。
7.将KF56DCLL标定为在排放实验中能达到的最低温度(通常为17摄氏度)
8.将K_Fuel_AF_Hot_Engine_Thres标定为在排放实验中催化器能够起燃时的冷却水温度。
这个数值取决于使用情况,同时车与车之间也有些细微的差别,应该多在几辆车上进行分析
9.标定K_Fuel_AF_Cold_Engine_Thres为一个冷却水温度值,但不要在按照理论空燃比供油和按F56D表空燃比供油之间造成任何能够注意到的驾驶性能下降。
10.K_Stoich_A