张波变速恒频双馈异步发电机运行原理讲义.docx

上传人:b****8 文档编号:11470195 上传时间:2023-03-01 格式:DOCX 页数:12 大小:414.18KB
下载 相关 举报
张波变速恒频双馈异步发电机运行原理讲义.docx_第1页
第1页 / 共12页
张波变速恒频双馈异步发电机运行原理讲义.docx_第2页
第2页 / 共12页
张波变速恒频双馈异步发电机运行原理讲义.docx_第3页
第3页 / 共12页
张波变速恒频双馈异步发电机运行原理讲义.docx_第4页
第4页 / 共12页
张波变速恒频双馈异步发电机运行原理讲义.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

张波变速恒频双馈异步发电机运行原理讲义.docx

《张波变速恒频双馈异步发电机运行原理讲义.docx》由会员分享,可在线阅读,更多相关《张波变速恒频双馈异步发电机运行原理讲义.docx(12页珍藏版)》请在冰豆网上搜索。

张波变速恒频双馈异步发电机运行原理讲义.docx

张波变速恒频双馈异步发电机运行原理讲义

变速恒频双馈风力发电机运行原理

张波

     风力发电以其无污染和可再生性,日趋受到世界各国的普遍重视,最近几年来取得迅速进展。

采用双馈电机的变速恒频风力发电系统与传统的恒速恒频风力发电系统相较具有显著的优势,如风能利用系数高,能吸收由风速突变所产生的能量波动以避免主轴及传动机构经受过大的扭矩和应力,和能够改善系统的功率因数等。

双馈电机变速恒频(VSCF)风力发电系统,是通过调节转子绕组励磁电流的频率、幅值、相位和相序来实现变速恒频控制。

它的核心技术是基于电力电子和运算机控制的交流励磁控制技术。

1工作原理

双馈电机的VSCF控制原理

     VSCF风力发电系统主要由风力机、增速箱、双馈发电机、双向变频器和控制器组成。

双馈发电机可在不同的转速下运行,其转速随风速的转变可作适当的调整,使风力机的运行始终处于最佳状态,以提高风能的利用率。

当电机的负载和转速转变时,通过调节馈入转子绕组的电流,不仅能维持定子输出的电压和频率不变,而且还能调节发电机的功率因数。

双馈异步发电机的结构类似绕组感应发电机,其定子绕组直接接入电网,转子绕组由一台频率、电压可调的低频电源(一般采用交-交变频器或交-直-交变频器)供给三相低频电流,图1给出这种系统的原理框图。

当转子绕组通过三相低频电流时,在转子中形成一个低速旋转磁场,那个磁场的旋转速度(n2)与转子的机械转速(n)相叠加,使其等于定子的同步转速(n1),即

从而在发电机定子绕组中感应出相应与同步转速的工频电压。

由上面转速关系能够推出风力发电机转速与定、转子绕组电流频率的关系,即

式中 f1、f2、n和p别离为定子电流频率、转子电流频率、发电机的转速和极对数。

     当风速转变时,转速随之而转变。

由式

(1)可知,当转速n发生转变时,若调节f2

相应转变,可使f1维持恒定不变,即与电网频率维持一致,实现风力发电机的VSCF控制。

当风力发电机处于亚同步速运行时,式

(1)取正号;当风力发电机处于超同步速运行时,式

(1)取负号;同步速运行时,f2=0,变流器向转子提供直流励磁电流。

 不同运行方式下的转子绕组功率流向

     当忽略电机损耗并取定子为发电机老例而转子为电动机老例时,发电机的定子输出电功率P1等于转子输入电功率(转差功率)与电机轴上输入机械功率Pmech之和,即

式中s为转差率

      由式

(2)、(4)可知,当发电机在亚同步速运行时,s>0,需要向转子绕组馈入电功率,由转子传递给定子的电磁功率为sP1,风力机传递给定子的电功率只有(1-s)P1。

当发电机在超同步速运行时,s<0,现在转子绕组向外供电,即定转子同时发电,现在风力机供给发电机的功率增至(1+|s|)P1。

      双馈发电机在低于和高于同步速不同运行方式下的输入输出功率关系,可用图2功率流向示用意表示。

由于在低于和高于同步速不同运行方式下转子绕组的功率流向不同,因此需要采用双向变频器。

2励磁控制系统结构

 励磁控制系统的大体功能

     为知足双馈发电机低于同步速、等于同步速和高于同步速运行的各类工况要求,向转子绕组馈电的双向变频器应知足输出电压(或电流)幅值、频率、相位和相序可调。

通过控制励磁电流的幅值和相位能够调节发电机的无功功率;通过控制励磁电流的频率可调节发电机的有功功率;通过风力机变桨距控制与发电机励磁控制相结合,可按最佳运行方式调节发电机的转速。

 励磁控制系统大体组成

     VSCF双馈风力发电机模拟实验系统框图如图3所示。

该系统由额定功率为的绕线转子感应电机、直流拖动电动机、调压器、IGBT交直交双向变频器、光电编码器、电流及电压传感器、80C196MC单片机、PC机及参数显示器等组成。

3 励磁系统控制原理

 变速恒频控制

     双馈风力发电机的变速恒频控制,就是按照风力机转速的转变相应地控制转子励磁电流的频率,使双馈发电机输出的电压频率与电网维持一致。

实现变速恒频控制能够采用两种方式,即有转速传感器和无转速传感器的变速恒频控制。

前者控制相对容易,但需要光电编码器;后者控制技术稍复杂一些。

      图3所示励磁控制系统采用有速度传感器的变速恒频控制。

电机的极对数p=2,定子电流频率f1=50Hz。

将p和f1值代入式

(1),可得励磁电流频率f2的与电机转速检测信号的关系式。

    亚同步速时馈入转子的电流频率为

式中kp是计数器在每10ms所记录的光电编码器的输出脉冲数。

可按照光电编码器每转输出2000个脉冲计算出电机转速与kp的关系,具体推导公式详见附录。

图4是双馈发电机低于同步速运行时转子绕组电流随转速调节频率的波形。

由图能够看出,转子电流的频率按照转速按式

(1)的规律转变,实现了双馈发电机的变速恒频控制。

 恒定电压控制

     当定子绕组开路,双馈发电机作空载运行时,定子绕组开路相电压的有效值为

式中 f1为定子绕组的电压频率;N1和kw1别离为定子绕组每相串联匝数和绕组系数,公式推导详见附录。

每极磁通

由转子绕组励磁电流决定。

     由式(7)可知,当定子绕组电压频率f1为恒定值时,在不同转速下只要维持转子绕组励磁电流值不变即可使定子绕组端电压维持不变。

但是当发电机负载运行时,由于定子绕组电阻和漏电抗压降,和由于定子电流电枢反映磁场的影响,即便转子励磁电流不变,每极磁通和定子绕组端电压也再也不是常数。

为了维持在不同运行状况下发电机端电压恒定,需要通过电压反馈调节转子励磁电流实现闭环恒压控制。

实验表明,双馈发电机输出电压采用闭环控制后,转速由1300r/min增加到1480r/min,定子绕组输出电压仅转变了。

 双馈发电机的并网控制

     传统的风力发电机组多采用异步发电机,并网时对电网的冲击较大。

双馈发电机可通过调节转子励磁电流实现软并网,避免并网时发生的电流冲击和过大的电压波动。

     在图3的励磁控制系统中,并网前用电压传感器别离检测出电网和发电机电压的频率、幅值、相位和相序,通过双向变流器调节转子励磁电流,使发电机输出电压与电网相应电压频率、幅值及相位一致,知足并网条件时自动并网运行。

由图5看出,并网后定子电流有振荡现象,这是由于在并网实验中没有采用有功和无功功率闭环控制造成的,采用闭环控制后,发电机的功角维持不变可解决电流震荡问题。

   如图5所示,并网前发电机电压略高于电网电压,并网后发电机电压即为电网电压。

并网前发电机电流为辅助负载的电流,并网后的电流为馈入电网的电流。

辅助负载用于并网前的发电机电压和电流监测,并网后将辅助负载切除。

为了便于并网前后发电机定子绕组电压电流的比较,并网实验中采用了辅助负载检测并网前定子绕组的电压和电流,在实际VSCF系统中,不必然需要辅助负载,可检测与比较电网和发电机的端电压以肯定是不是知足并网条件。

 三态转换控制

      在亚同步速运行时,变频器向转子绕组馈入交流励磁电流,同步速运行时变流器向转子绕组馈入直流电,而超同步速运行时转子绕组输出交流电通过变流器馈入电网。

亚同步、同步和超同步三种不同运行状态的动态转换是变速恒频双馈风力发电机励磁控制的一项关键技术。

     由于风速转变的不稳固性,风力发电机难以长时刻稳固运行在同步速。

为了避免反复跨越同步点和在同步速周围小转差区的控制难度,在实际变速恒频风力发电系统中,老是把稳固运行工作点选在避开同步速周围小转差区(|s|<之外的区间。

自然,跨越同步点是不免的。

     跨越同步点的三种运行状态的转换可采用两种不同的方式,一是采用“交-直-交”控制模式,二是采用“交-交”控制模式。

“交-直-交”控制模式是随着发电机转速的增高逐渐降低转子绕组电流的频率,当转速接近同步速时供给转子绕组直流(现在转子三相绕组为“两并一串”的联接方式而变频器控制不同桥臂的三个功率开关器件同时导通或关闭,输出可控的直流励磁电流)。

当转速超过同步速后,变流器停止直流供电,现在转子绕组向变流器输出转差频率的交流电。

采用“交-直-交”控制模式的发电机跨越同步速时的转子电流实测波形如图6所示。

“交-交”控制模式因省去了向转子绕组供直流电的环节,控制略微容易一些,但三种运行状态转换的光滑性稍差一些,其转子电流实验波形如图7所示。

参考文献:

⑴中国电机工程学报第23卷第11期2003年11月林成武王凤翔姚兴佳

⑵《风力发电》讲座第三讲中国科学院电工研究所倪受元

⑶《电机学》中国电力出版社第三版东南大学周鹗

⑷《风力发电》中国电力出版社王承熙张源

附录:

一、公式推导:

(1)

推导:

由于

,且

,所以

(2)

推导:

设发电机转子转速为nr/min,则1ms电机转速为

r/ms,所以10ms输出脉冲个数

,又

,代入上式得

,故

(3)

推导:

,则空载电动势

因此

,其中

二、功角

将δ=ψ-ϕ概念为功角。

它表示发电机的励磁电势(空载电势)和端电压之间相角差。

功角对于研究电机的功率转变和运行的稳固性有重要意义。

ψ为内功率因数角,其概念为空载电势与负载电流之间的夹角。

如图所示:

按照电机学原理,在忽略电机电枢绕组电阻情形下,隐极发电机的有功功率和无功功率可别离表示为

其中,U为发电机的端电压,Eq为发电机的感应电势,xd为发电机的同步电抗,δ为感应电势与端电压间的相位夹角(称为发电机的功率角或功角),P为有功功率,Q为无功功率。

当感应电势和电压恒按时,传输的有功功率是功角δ的正弦函数。

3、IGBT(绝缘栅双极型晶体管)

IGBT是以GTR(功率晶体管)为主导元件,MOSFEET(电力场效应晶体管)为驱动元件的复合管。

等效电路图如下:

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1