细菌数量生长规律的数学模型.docx

上传人:b****7 文档编号:11367578 上传时间:2023-02-28 格式:DOCX 页数:21 大小:167.70KB
下载 相关 举报
细菌数量生长规律的数学模型.docx_第1页
第1页 / 共21页
细菌数量生长规律的数学模型.docx_第2页
第2页 / 共21页
细菌数量生长规律的数学模型.docx_第3页
第3页 / 共21页
细菌数量生长规律的数学模型.docx_第4页
第4页 / 共21页
细菌数量生长规律的数学模型.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

细菌数量生长规律的数学模型.docx

《细菌数量生长规律的数学模型.docx》由会员分享,可在线阅读,更多相关《细菌数量生长规律的数学模型.docx(21页珍藏版)》请在冰豆网上搜索。

细菌数量生长规律的数学模型.docx

细菌数量生长规律的数学模型

题目:

细菌(数量)生长规律的数学模型

北京理工大学吴帆20081043

1.摘要:

 

假定在繁殖过程中,细菌不发生变异.其繁殖过程可归结为细菌(活体)个体数变化的问题,实际上这个模型就是一个细菌数量关于时间t的一个函数。

在培养皿上涂有一薄层培养基.显然细菌的繁殖是受到了环境的限制,细菌只能沿着平面向外按扩散方式繁殖.由于只有在外层的细菌接触培养液,内层细菌都处于不繁殖状态,根据这个细菌的繁殖特点,和细菌在失去培养基条件保持生命体时间τ为定值的条件。

模拟出细菌生长-死亡曲线的数学模型的整体结构。

不仅如此,由于处于繁殖状态的细菌个数是和当前菌落半径成正比的,类比人口增长的马尔萨斯模型与该模型的改进,利用各个参数之间的微分关系,求出细菌繁殖速率与时间的关系,这也反映出环境阻力对细菌生长的影响,(这是原文章所忽略的)。

将反映出环境阻力的细菌生长曲线带入细菌生长-死亡曲线的数学模型的整体结构。

就可以得到一个含参的细菌数量关于时间的一个函数。

利用这个函数实际细菌接种实验结果就可以得到一个接近实际的细菌生长规律的数学模型。

这也就是本论文的分析结果。

 

2.模型建立:

a.问题背景:

少量的细菌,接种到一定体积的、合适的新鲜液体培养基中,在适宜的条件下进行培养,定时测定培养液中的菌量,以菌量的对数作纵坐标、生长时间作横坐标,绘制的曲线为生长曲线。

一般生长曲线可分为延迟期、对数期、稳定期和衰亡期,生长曲线是微生物在一定环境条件下于液体培养时所表现出的群体生长规律。

不同的微生物其生长曲线不同,即使是同一种微生物,在不同的培养条件其生长曲线也不同,测定在一定条件下培养的微生物的生长曲线。

在科学研究及生产上是非常有意义的。

b.理论分析:

其一,

在二维培养基平面下细菌生长和三维空间不同,由于细菌活动自由度的限制,只有在外表层的细菌接受营养来源,也就是说只有分布在外层的细菌才有参与繁殖的条件。

其二,

对于同种细菌,在没有营养供给的条件下并不会直接死亡,而是维持一段时间的活体状态,由于同种细菌个体内部生物结构大致相同,所以这段延迟时间是一个客观存在的,确定的数值。

其三,

当培养基内的营养耗尽时,原来外层处于繁殖状态的细菌在较短的时间内进入非繁殖状态的活体形式,此时,细菌生长的导数跃了。

不仅如此,此时在培养基的细菌都是以非繁殖状态的活体形式。

由于对于每一个细菌,这段延迟时间是个定值,随后,细菌菌落将进入死亡期。

根据先进入非繁殖状态的细菌先死亡,后进入非繁殖状态的细菌后死亡的原理,和细菌在二维平面扩散式繁殖的特点,得出:

在细菌的生长曲线中,死亡期的这段曲线,是在改变符号的前提下丝毫不差地重复生长期的那段曲线的。

其四,

由前三点的分析,细菌生长-死亡曲线函数就转化为由生长期曲线和一些相关常量确定的函数。

分析重点就转化为在分析生长期中细菌生长特点。

其五,

回到细菌在二维平面的生长特点,我们可以看出,任意时刻参与繁殖的细菌数量是一个和菌落半径成正比的量,在这一条件下,类比人口数量增长的马尔萨斯人口模型与该模型的改进,引入改进模型中反映环境阻力影响生物繁殖的量。

(在人口模型中叫社会摩擦系数)。

列出关于细菌菌落半径,时间和细菌数量的一阶线性微分方程。

再求解出反映出环境阻力的细菌生长曲线。

最后,

将反映出环境阻力的细菌生长曲线带入细菌生长-死亡曲线的数学模型的整体结构。

就可以得到一个含参的细菌数量关于时间的一个函数。

根据实际数据定义各项参数就得到细菌在二维培养基里的生长繁殖规律。

分析结束。

c.参数确定:

参数名称

参数符号

参数说明

主函数参数

未定常量

平均寿命

τ

在已经完全没有营养供给的前提下细菌生命特征还能维持的一段时间

生长时间

T

从开始到培养基养分耗尽的一段时间

计算变量

细菌数量(个)

m

该二维培养基上细菌种群数量

时间

t

某时刻(接种时t=0)(时刻变量)

参数名称

参数符号

参数说明

生长期生长曲线函数参数

计算变量

半径

R

某时刻细菌菌落平均半径(时刻变量)

速度

v

某时刻细菌扩展速度

未定常量

面密度

ρ

单位面积上细菌数量

线密度

ρ’

单位长度上细菌数量

生态系数

a

马尔萨斯改进模型中的系数

社会摩擦系数

b

马尔萨斯改进模型中的系数

细菌初始数量

m0

t=0时刻细菌数量

菌落初始半径

R0

t=0时刻菌落半径

最大种群数量

M

细菌种群所能达到的最大数量

通用常量

圆周率

π

圆周率,其值约为3.141592653

自然常数

e

lim(1+1/x)^x,x->+∞,其值约为2.71828

注:

由于本文并未设计实际数值计算,各个参数单位没明确给出,可默认为国际标准单位。

3.模型求解:

图1 二维空间中细菌繁殖的生长方式

a.思维依据:

首先再次说明细菌的τ———“平均寿命”这个概念。

细菌的“寿命”是指,在已经完全没有营养供给的前提下,细菌不会立即解体,其原先那种生命特征还能维持一段时间,把这段时间称为“寿命”.对同一种类型的细菌群体,都可用“平均寿命”来描述.因此τ是客观的、内在的、确定的,τ值与细菌的种类以及所处的环境有关。

假定在t时有n1细菌断了“口粮”.而在t+τ时有n2细菌解体(死亡),则一定有

n1≈n2.

在培养皿上涂有一薄层培养基.显然细菌的繁殖是受到了环境的限制,细菌只能沿着平面向外按扩散方式繁殖.由于只有在外层的细菌接触培养液,内层细菌都处于不繁殖状态,根据这个细菌的繁殖特点,和细菌在失去培养基条件保持生命体时间τ为定值的条件。

模拟出细菌生长-死亡曲线的数学模型的整体结构。

不仅如此,由于处于繁殖状态的细菌个数是和当前菌落半径成正比的,类比人口增长的马尔萨斯模型与该模型的改进,求出细菌繁殖速率与时间的关系,这也反映出环境阻力对细菌生长的影响。

将反映出环境阻力的细菌生长曲线带入细菌生长-死亡曲线的数学模型的整体结构。

就可以得到一个含参的细菌数量关于时间的一个函数。

利用这个函数实际细菌接种实验结果就可以得到一个接近实际的细菌生长规律的数学模型。

这也就是本论文的分析结果。

 

b.主函数模型的确定求解:

取一个圆形培养皿,在底部涂上一层极薄的培养基,在培养基的中心处接种细菌.细菌基本上是按同心圆向外扩散的方式繁殖,见图1.按此种方式接种,只有处在半径为R圆周上的细菌,才有向外繁殖的机会.

假设以求得一个m关于t的函数m(t),在t=T时刻,培养基已全部用完,此时m应达到最大值M.则M=m(T);

在此种培养方式中,细菌有的诞生,有的死亡,呈现出复杂情况.即使如此,也逃不脱2个时间τ,Τ的制约.也就是说,τ,Τ之间只可能有下列3种情况:

τ>Τ,τ<Τ,τ=Τ.

图2 τ>Τ时细菌繁殖的生长曲线

Fig·2 Thecurveofbacteriaofreproductionandgrowth

inτ>Τ

b.1.当τ>Τ时;

τ>T情况下细菌繁殖规律由图2可见,由于τ>Τ细菌的生长曲线由生长期、稳定期和死亡期3部分构成.在生长期内,细菌全部存活,

但受培养基的限制,细菌的个数只能达到最大值M,以后就停止繁殖.由于τ>Τ,因此M能够保持到τ时刻,一旦超过τ时刻,最早出生的细菌(也就是培养皿中心处的全部细菌)将统统死亡.生长曲线在此处出现一个跃变,跃变的幅度恰好就是接种的那些“种子”细菌.接着就是先出生的先死亡.如AA这一时刻出生的,要比BB时刻出生的早死,而且死亡的数量A′A′,B′B′应有A′A′=AA和B′B′=BB.由此可见,在生长曲线m(t)中,死亡期的这段曲线,是在改变符号的前提下,丝毫不差地重复生长期的那段曲线的.

如果将m(t)写成函数形式,即是

M(t)=

m(t),0≤t≤T;

M,T≤t≤τ;

M-m(t-τ),τ≤t≤τ+T;

0,τ+T≤t.

图4τ=Τ时细菌繁殖的生长曲线

Fig·4 Thecurveofbacteriaofreproductionandgrowth

Inτ=Τ

b.2.当τ=Τ时;

τ=T情况下细菌繁殖规律 此情况与情况2·2·1生长曲线m(t)形状差不多,只是“稳定期”消失,即图2上的W,P2点重合,相应的生长速度曲线cd段也随之消失.

图3 τ

Fig·3 Thecurveofbacteriaofreproductionandgrowth

inτ

M(t)=

m(t),0≤t≤T;

M-m(t-τ),τ≤t≤τ+T;

0,τ+T≤t.

b.3.当τ<Τ时;

τ

能达到最大值M.m(t)的函数形式是

M(t)=

m(t),0≤t≤T;

M-m(t-τ),T≤t≤τ;

M-m(t-τ),τ≤t≤τ+T;

0,τ+T≤t.

在图3中,与共存期相应的速度曲线cd段,实质上是bb′和ee′相互抵消的结果.也就是说,只有在共存期,才会出现“出生”和“死亡”这两个机理

同时在起作用.

c.生长期生长曲线函数求解

由于在理想情况下细菌的生长繁殖和人口的生长规律是很相似的,基于前人对人口增长规律的研究与实验,引入马尔萨斯人口模型:

设dp/dt=ap,p(t0)=p0,

该式是一阶线性其次方程的Cauchy问题,解为

p(t)=e^a(t-t0),

但是根据实际计算,该模型所算出的计算结果比实际数据大很多,原因就是由于随着种群个体数量的增长,实际的环境因素的影响会越来越大,这种制约因素是不可忽略的。

所以基于人们对马尔萨斯模型的不断探索,人们对马尔萨斯模型修正后,引入常量b为社会摩擦系数,模型修正为

dp/dt=ap-bp^2,p(t0)=p0;

其中社会摩擦系数在细菌种群里表现为培养基酸碱性,氧气浓度,温度,种内竞争等制约细菌生长的因素。

类比细菌的生长模型,得到

dm/dt=am-bm^2,m(t0)=m0;

(1)

这里要注意的是,由于细菌受到二维平面与养分供给的制约,对于整个细菌种群来说并不是所有的细菌都参与了繁殖,就是说这个式子离得m并不能看做是当前细菌的总数,而应该看做是参与繁殖系统的细菌总数。

根据前文所述的细菌在二维平面的生长特点,得到处于繁殖状态的细菌个数是和当前菌落半径成正比的,即

m=(2πR)*ρ’(ρ’为细菌线密度)

(2)

(1)得:

dm=(am-bm^2)dt;

(2)带入得:

2πρ’dR=2πρ’R(a-b*2πρ’R)dt;

解得:

dR=R(a-b*2πρ’R)dt;(3)

利用分离变量法对等式两边分别积分得:

R(t)=(a*R0*e^at)/(a-2πρ’R0*b+2πρ’R0*b*e^at);(4)

假定在t到t+dt时段内,相应的v小圆环内细菌繁殖dm,则有

dm=ρ(2πRdR)(5)(ρ为细菌的面密度.);

两边对R积分得

m(t)=m0+πρR^2.(6);

将(4)带入(6)得

m(t)=m0+πρ*{(a*R0*e^at)/(a-2πρ’R0*b+2πρ’R0*b*e^at)}^2,

这就是个m关于t的线性函数,也就是主函数里的待定函数。

待定常量有m0,R0,ρ,ρ’,a,b;

生长期生长曲线函数求解结果:

m(t)=m0+πρ*{(a*R0*e^at)/(a-2πρ’R0*b+2πρ’R0*b*e^at)}^2

(0<=t<=T)(7)

d.综述整理:

由a-c段落的分析求解,将(7)式带入主函数,得到:

1.当τ

M(t)=

m(t),0≤t≤T;

M,T≤t≤τ;

M-m(t-τ),τ≤t≤τ+T;

0,τ+T≤t.

2.当τ=T时:

M(t)=

m(t),0≤t≤T;

M-m(t-τ),τ≤t≤τ+T;

0,τ+T≤t.

3.当τ>T时:

M(t)=

m(t),0≤t≤T;

M-m(t-τ),T≤t≤τ;

M-m(t-τ),τ≤t≤τ+T;

0,τ+T≤t.

其中m(t)=m0+πρ*{(a*R0*e^at)/(a-2πρ’R0*b+2πρ’R0*b*e^at)}^2

待定常量有m0,R0,ρ,ρ’,a,b;

4.模型检验:

带入合适的数值带入待定常量,然后用数学软件matlab绘图功能描绘出细菌的模糊生长曲线,对比网上查阅的大肠杆菌生长曲线,(只考虑τ

资料:

大肠杆菌生长曲线

模型函数

5.误差分析:

1.由于从各个细菌进入非繁殖状态到死亡的时间是一系列方差较大的数,所以初始接种细菌进入非繁殖状态经过“平均寿命”后的死亡所表现的是一个不明显的突变。

2.在细菌从生长期进入稳定期时,m(t)函数的导数是没有发生突变的,而模拟函数中这种突变表现的较为明显。

3.从模型的合理性分析,既然细菌生长速率受环境阻力的影响,那么细菌的平均寿命τ也应该是一个和环境有关的量,也就是说τ也是关于t的函数。

这样的话“死亡期的这段曲线,是在改变符号的前提下,丝毫不差地重复生长期的那段曲线的.”这句话就不成立了。

但是死亡期的曲线和生长期的曲线也应该有必然的联系。

4.结合实验与假设,在实验过程中,分布与中间的细菌其实也会有接受从外部通过渗透作用进入的营养成分的可能。

假设中完全的认为处于菌落内部的细菌没有接受营养供给也没有参与繁殖系统。

5.实际的细菌菌落繁殖是一个庞大而又复杂的系统,影响因素也是数不胜数的。

建立模型并不能完全的符合实际,只能定性的反映出细菌在各个时期的生长特点,生长规律。

6.模型评价:

1.虽然实际的细菌菌落繁殖是非常复杂的,影响因素也很多的。

建立模型并不能完全的符合实际,但是这个模型能定性的反映出细菌在各个时期的生长特点,生长规律。

从模型的提出到假设分析计算,结构清晰合理,思维严谨。

2.此模型利用了马尔萨斯人口模型的类比,体现了生物种群发展规律的一致性。

这种推广的思想也可用于其他模型。

3.该模型虽然较为简单,但能合理地反映出在假设的影响因素下求得模型的实际型,可行性。

7.模型推广:

对一维细菌生长模型的推广:

在一维空间情况下,在一条细细的刻线内才有培养基.显然细菌只能沿细线向前繁殖.

先在玻璃板上刻出一条细线,放进培养液后,在细线一端接种细菌,细菌只能沿细线向另一端繁殖,类比得出细菌的个数m(t)。

重复上述实验的讨论,将得到与图2、图3十分相似的曲线m(t).

同样,这个模型也可类比到特殊状态下的三维细菌生长模型。

8.参考文献:

[1]王树禾.数学模型选讲[M].北京:

科学出版社

[2]许金泉等.云南大学学报(自然科学版),2008,30(S2):

157~159CN53-1045/N ISSN0258-7971

JournalofYunnanUniversity

[3] 顾夏声,李献文,竺建荣.水处理微生物学[M].北

京:

中国建筑工业出版社,2006.

[4] 张漂清.水处理微生物学[M].北京:

中国水利水电

出版社,2007.

[5] 张胜华.水处理微生物学[M].北京:

化学工业出版

社,2005.

Mathematicsmodelofbacteria(quantity)growthandreproductionrule

XUJin-quan1,ZHANGJuan2,MAQiong-yu3,LIYun4

(1·FacultyofMaterialsandMetallurgicalEngineering,KunmingUniversityofScienceandTechnology,Kunming650093,

China;2·FacultyofApplicationTechnologyEngineering,KunmingUniversityofScienceandTechnology,Kunming650093,

China;3·EnvironmentalProtectionAgency,Chenggong650500,China;4·SouthwestAluminum(Group)CoLtd,Chongqing

401326,China)

Abstract:

Inordertodescribetherelationcurveofsinglebacteriagrowthandreproductionrule,thethree

kindofextremeenvironmentaredesigned.Applyingmathandphysicsmethodandanalyzingbacteriagrowth

andreproductionineveryextremeenvironmentthenewbacteriagrowthandreproductioncurveisgained.

Keywords:

bacteria;reproduction;growthmathematicsmodel

 

9.附录:

1.原论文:

云南大学学报(自然科学版),2008,30(S2):

157~159CN53-1045/N ISSN0258-7971

JournalofYunnanUniversity

细菌(数量)生长规律的数学模型

许金泉1,张 娟2,马琼瑜3,李 云4

(1·昆明理工大学材料与冶金工程学院,云南昆明 650093;2·昆明理工大学应用技术学院,云南昆明 650093;

3·呈贡县环保局环境监测站,云南呈贡 650500;4·西南铝业(集团)有限责任公司,重庆 401326)

摘要:

为描述单一细菌群落的生长繁殖(数量、速度)曲线的关系,设计了3种极端条件环境.应用数理方法,

分析在各种极端环境中细菌的繁殖情况,得到了新的细菌生长繁殖规律.

关键词:

微生物;生长繁殖;数学模型

中图分类号:

TX172  文献标识码:

A  文章编号:

0258-7971(2008)S2-0157-03

从微生物的基本概念出发,用数学的方法,建立了细菌的生长规律的数学模型[1,2].从这个基本模型出发,将可以更详细地描述出细菌在各个阶段的生长特征[3].

理想实验

假定在繁殖过程中,细菌不发生变异.其繁殖过程可归结为细菌(活体)个体数量变化的问题.以3种极端环境条件,设计了3个理想实验.①三维空间情况:

如酿酒、酿制酱油等占有庞大空间的情况,此时细菌可能向任何方向生长繁殖.②二维空间情况:

在培养皿上涂有一薄层培养基.显然细菌的繁殖是受到了环境的限制,细菌只能沿着平面向外按扩散方式繁殖.③一维空间情况:

在一条细细的刻线内才有培养基.显然细菌只能沿细线向前繁殖.

理论解释与分析

首先提出细菌的τ———“平均寿命”这个概念。

细菌的“寿命”是指,在已经完全没有营养供给的前提下,细菌不会立即解体,其原先那种生命特征还能维持一段时间,把这段时间称为“寿命”.对同一种类型的细菌群体,都可用“平均寿命”来描述.因此τ是客观的、内在的、确定的,τ值与细菌的种类以及所处的环境有关.假定在t时有n1细菌断了“口粮”.而在t+τ时有n2细菌解体(死亡),则一定有

n1≈n2.

(1)

2·1 

实验1 在三维空间下将少量(m0)细菌均匀地接种在培养基内,让其温度、压力、光照、pH值等实验条件保持不变.从细菌开始分裂时算起(即时间的起始点),设在t时

刻细菌数量为m,而在t+dt时刻,细菌繁殖了dm,则有

dm=amdt.

(2)

此时细菌的繁殖规律为何是

(2)式呢?

理由如下:

其一,因为细菌是采取2,4,8…这种等比级数方式繁殖的;其二,所有的种子细菌(m0)都有等同的繁殖机会,故而在

(2)式等式右边应有m.另外,由于实验条件恒定,理应把α认定为常数,考虑到细菌的代谢物可能改变培养基的酸、碱度,此时应把α当作时间函数α(t)更为适宜.由

(2)式得

logm=logm0+∫t0α(ξ)dξ.(3)

当α为常数时,得到最简单的情况

m=m0eαt.(3′)

假定当t=T时刻,培养基已全部被细菌吃完,此时m应达到最大值

M=m0e∫T0α(ξ)dξ.(4)

由于细菌采用分裂方式繁殖,由1个细菌分裂为2个新细菌.在T时刻的M个细菌,虽然没有营养供给,却还会存活一段时间τ,当达到t=T+τ时,M个细菌全部死亡.

2·2 

实验2 在二维空间下

收稿日期:

2008-09-10

作者简介:

许金泉(1971- ),男,云南人,工程师,主要从事环境工程和材料物理化学方面的研究.

图1 实验2中细菌繁殖的生长方式

图2 τ>Τ时细菌繁殖的生长曲线

Fig·2 Thecurveofbacteriaofreproductionandgrowth

inτ>Τ

取一个圆形培养皿,在底部涂上一层极薄的培养基,在培养基的中心处接种细菌.细菌基本上是按同心圆向外扩散的方式繁殖,见图1.设细菌向外繁殖的速度为υ,则有

R=vt.(5)

按此种方式接种,只有处在半径为R=vt圆

周上的细菌,才有向外繁殖的机会.其所接触到的培养基完全是新鲜的,故而繁殖速度v应为一定值.假定在t到t+dt时段内,相应的v小圆环内细菌繁殖dm,则有

dm=ρ(2πRdR)=2πρv2dt.(6)其中:

ρ为细菌的面密度.

由(6)式得

m(t)=m0+πρv2t2.(7)

与(3)式相比,两者相差巨大.假定在t=T时刻,培养基已全部用完,此时m应达到最大值.

M=m0+πρv2T2.(8)

在此种培养方式中,细菌有的诞生,有的死亡,呈现出复杂情况.即使如此,也逃不脱2个时间τ,Τ的制约.也就是说,τ,Τ之间只可能有下列3种情况:

τ>Τ,τ<Τ,τ=Τ.

2·2·1 

τ>Τ情况下细菌繁殖规律 由图2可见,由于τ>Τ细菌的生长曲线由生长期、稳定期和死亡期3部分构成.在生长期内,细菌全部存活,

但受培养基的限制,细菌的个数只能达到最大值M,以后就停止繁殖.由于τ>Τ,因此M能够保持到τ时刻,一旦超过τ时刻,最早出生的细菌(也就是培养皿中心处的全部细菌)将统统死亡.生长曲线在此处出现一个跃变,跃变的幅度恰好就是接种的那些“种子”细菌.接着就是先出生的先死亡.如AA这一时刻出生的,要比BB时刻出生的早死,而且死亡的数量A′A′,B′B′应有A′A′=AA和B′B′=BB.由此可见,在生长曲线m(t)中,死亡

期的这段曲线,是在改变符号的前提下,丝毫不差地重复生长期的那段曲线的.

若从生长速度的曲线来看,在生长期,生长速度是量值为v的直线ab段;在死亡期生长速度为v的直线ef段;而在稳定期,生长速度为0值.下面从(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1