TVS管原理和电容作用.docx
《TVS管原理和电容作用.docx》由会员分享,可在线阅读,更多相关《TVS管原理和电容作用.docx(6页珍藏版)》请在冰豆网上搜索。
TVS管原理和电容作用
TVS管原理和电容作用
TVS管
1.原理
TVS管有单方向(单个二极管)和双方向(两个背对背连接的二极管)两种。
单方向的TVS管的电路符号与普通的稳压管相同,其电压-电流特性曲线如图1所示,其正向特性与普通二极管相同,反向特性为典型的PN结雪崩器件。
图2是单向TVS的电流-时间和电压-时间曲线。
图3是双向TVS管的电路图形符号。
图1TVS电压-电流特性
图2TVS电压(电流)时间特性
TVS两极的电压为其最小击穿电压VBR。
按TVS的VBR与标准值的离散程度,可把VBR分为5%和10%两种。
对于5%的VBR来说,VWM=0.85VBR;对于10%的VBR来说,VWM=0.81VBR。
1)最大箝位电压VC和最大峰值脉冲电流IPP。
当持续时间为20mS的脉冲峰值电流IPP流过TVS时,在其两端出现的最大峰值电压为VC。
VC、IPP反映了TVS的浪涌抑制能力。
VC与VBR之比称为箝位因子,一般在1.2~1.4之间。
2)电容量C。
电容量C是由TVS雪崩结截面决定的,是在特定的1MHz频率下测得的。
C的大小与TVS的电流承受能力成正比,C太大将使信号衰减。
因此,C是数据接口电路选用TVS的重要参数。
3)最大峰值脉冲功耗PM。
PM是TVS能承受的最大峰值脉冲功率耗散值。
在给定的最大箝位电压下,功耗PM越大,其浪涌电流的承受能力越大;在给定的功耗PM下,箝位电压VC越低,其浪涌电流的承受能力越大。
另外,峰值脉冲功耗还与脉冲波形、持续时间和环境温度有关。
而且,TVS所能承受的瞬态脉冲是不重复的,器件规定的脉冲重复频率(持续时间与间歇时间之比)为0.01%。
如果电路内出现重复性脉冲,应考虑脉冲功率的累积,有可能损坏TVS。
4)箝位时间TC。
TC是从零到最小击穿电压VBR的时间。
对单极性TVS小于1×10-12s;对双极性TVS小于10×10-12s。
2.分类
TVS器件按极性可分为单极性和双极性两种;按用途可分为通用型和专用型;按封装和内部结构可分为:
轴向引线二极管、双列直插TVS阵列、贴片式和大功率模块等。
轴向引线的产品峰值功率可以达到400W、500W、600W、1500W和5000W。
其中大功率的产品主要用在电源馈线上,低功率产品主要用在高密度安装的场合。
对于高密度安装的场合还可以选择双列直插和表面贴装的封装形式。
3.选型
1)确定被保护电路的最大直流或连续工作电压,电路的额定标准电压和最大可承受电压。
2)TVS的额定反向关断电压VWM应大于或等于被保护电路的最大工作电压。
若选用的VWM太低,器件可能进入雪崩或因反向漏电流太大影响电路的正常工作。
3)TVS的最大反向箝位电压VC应小于被保护电路的损坏电压。
4)在规定的脉冲持续时间内,TVS的最大峰值脉冲功率PM必须大于被保护电路可能出现的峰值脉冲功率。
在确定了最大箝位电压后,其峰值脉冲电流应大于瞬态浪涌电流。
一般TVS的最大峰值脉冲功率是以10/1000ms的非重复脉冲给出的,而实际的脉冲宽度是由脉冲源决定的,当脉冲宽度不同时其峰值功率也不同。
如某600WTVS,对1000ms脉宽最大吸收功率为600W,但是对50ms脉宽吸收功率就可达到2100W,而对10ms的脉宽最大吸收功率就只有200W了。
而且吸收功率还和脉冲波形有关:
如果是半个正弦波形式的脉冲,吸收功率就要减到75%,若是方波形式的脉冲,吸收功率就要减到66%。
5)平均稳态功率的匹配对于需要承受有规律的、短暂的脉冲群冲击的TVS,如应用在继电器、功率开关或电机控制等场合,有必要引入平均稳态功率的概念。
举例说明,在一功率开关电路中会产生120Hz,宽度为4ms,峰值电流为25A的脉冲群。
选用的TVS可以将单个脉冲的电压箝位到11.2V。
此中平均稳态功率的计算为:
脉冲时间间隔等于频率的倒数1/120=0.0083s,峰值吸收功率是箝位电压与脉冲电流的乘积11.2V×25A=280W,平均功率则为峰值功率与脉冲宽度对脉冲间隔比值的乘积,即280×(0.000004S/0.0083S)=0.134W。
也就是说,选用的TVS平均稳态功率必须大于0.134W。
6)对于数据接口电路的保护,还必须注意选取具有合适电容C的TVS器件。
7)根据用途选用TVS的极性及封装结构。
交流电路选用双极性TVS较为合理;多线保护选用TVS阵列更为有利。
8)温度考虑瞬态电压抑制器可以在-55℃~+150℃之间工作。
如果需要TVS在一个变化的温度下工作,由于其反向漏电流ID是随温度增加而增大;功耗随TVS结温增加而下降,从+25℃到+175℃,大约线性下降50%;击穿电压VBR随温度的增加按一定的系数增加。
因此,必须查阅有关产品资料,考虑温度变化对其特性的影响。
4.注意事项
1)对瞬变电压的吸收功率(峰值)与瞬变电压脉冲宽度间的关系。
手册给的只是特定脉宽下的吸收功率(峰值),而实际线路中的脉冲宽度则变化莫测,事前要有估计。
对宽脉冲应降额使用。
2)对小电流负载的保护,可有意识地在线路中增加限流电阻,只要限流电阻的阻值适当,不会影响线路的正常工作,但限流电阻对干扰所产生的电流却会大大减小。
这就有可能选用峰值功率较小的TVS管来对小电流负载线路进行保护。
3)对重复出现的瞬变电压的抑制,尤其值得注意的是TVS管的稳态平均功率是否在安全范围之内。
4)作为半导体器件的TVS管,要注意环境温度升高时的降额使用问题。
特别要注意TVS管的引线长短,以及它与被保护线路的相对距离。
当没有合适电压的TVS管供采用时,允许用多个TVS管串联使用。
串联管的最大电流决定于所采用管中电流吸收能力最小的一个。
而峰值吸收功率等于这个电流与串联管电压之和的乘积。
5)TVS管的结电容是影响它在高速线路中使用的关键因素,在这种情况下,一般用一个TVS管与一个快恢复二极管以背对背的方式连接,由于快恢复二极管有较小的结电容,因而二者串联的等效电容也较小,可满足高频使用的要求。
5.注:
对TVS管的瞬间保护作用,有的资料上说是发生了齐纳击穿,有的说是雪崩击穿,笔者采用的观点是雪崩击穿。
从而将稳压管(齐纳二极管)与TVS管区分。
基本上参照了【周立敏――TVS瞬态干扰抑止管性能与应用】
电容的作用:
1)旁路
旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。
就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。
为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。
这能够很好地防止输入值过大而导致的地电位抬高和噪声。
地电位是地连接处在通过大电流毛刺时的电压降。
2)去耦
去耦,又称解耦。
从电路来说,总是可以区分为驱动的源和被驱动的负载。
如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是所谓的“耦合”。
去耦电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
将旁路电容和去耦电容结合起来将更容易理解。
旁路电容实际也是去耦合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。
高频旁路电容一般比较小,根据谐振频率一般取0.1μF、0.01μF等;而去耦合电容的容量一般较大,可能是10μF或者更大,依据电路中分布参数、以及驱动电流的变化大小来确定。
旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。
这应该是他们的本质区别。
3)滤波
从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。
但实际上超过1μF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。
有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。
电容的作用就是通高阻低,通高频阻低频。
电容越大低频越容易通过。
具体用在滤波中,大电容(1000μF)滤低频,小电容(20pF)滤高频。
曾有网友形象地将滤波电容比作“水塘”。
由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。
它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。
滤波就是充电,放电的过程。
4)储能
储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。
电压额定值为40~450VDC、电容值在220~150000μF之间的铝电解电容器(如EPCOS公司的B43504或B43505)是较为常用的。
根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10KW的电源,通常采用体积较大的罐形螺旋端子电容器。