版人教版六年级数学下册教案.docx

上传人:b****8 文档编号:10831273 上传时间:2023-02-23 格式:DOCX 页数:105 大小:180.23KB
下载 相关 举报
版人教版六年级数学下册教案.docx_第1页
第1页 / 共105页
版人教版六年级数学下册教案.docx_第2页
第2页 / 共105页
版人教版六年级数学下册教案.docx_第3页
第3页 / 共105页
版人教版六年级数学下册教案.docx_第4页
第4页 / 共105页
版人教版六年级数学下册教案.docx_第5页
第5页 / 共105页
点击查看更多>>
下载资源
资源描述

版人教版六年级数学下册教案.docx

《版人教版六年级数学下册教案.docx》由会员分享,可在线阅读,更多相关《版人教版六年级数学下册教案.docx(105页珍藏版)》请在冰豆网上搜索。

版人教版六年级数学下册教案.docx

版人教版六年级数学下册教案

(此文档为word格式,下载后您可任意编辑修改!

1.负数

【教学目标】

1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

2.初步学会用负数表示一些日常生活中的实际问题。

3.能借助数轴初步理解正数、0和负数之间的关系。

【重点难点】

负数的意义和数轴的意义及画法。

【课时安排】

建议共分3课时:

负数的初步认识2课时

在数轴上表示正数、0和负数1课时

第1课时负数的初步认识

(1)

【教学内容】

负数的初步认识

(1)(教材第2页例1)。

【教学目标】

结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

【重点难点】

体会负数的重要性。

【教学准备】

多媒体课件。

【情景导入】

1.教师利用课件向学生展示教材第2页主题图。

(有条件的可播放天气预报视频)

2.引导学生观察图片,说出图中内容。

(教师:

观察上图,你能发现什么?

0℃代表什么意思?

-3℃和3℃各代表什么意思?

引出课题并板书:

负数的初步认识

(1)

【新课讲授】

教学教材第2页例1。

(1)教师板书关键数据:

0℃。

(2)教师讲解0℃的意思。

0℃表示淡水开始结冰的温度。

比0℃低的温度叫零下温度,通常在数字前加“-”(负号):

如-3℃表示零下3摄氏度,读作负三摄氏度。

比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:

如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

(3)我们来看一下课本上的图,你知道北京的气温吗?

最高气温和最低气温都是多少呢?

随机点同学回答。

(4)刚刚同学回答得很对,读法也很正确。

(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?

用手势告诉大家好吗?

学生讨论合作,交流反馈。

(6)请同学们把图上其它各地的温度都写出来,并读一读。

(7)教师展示学生不同的表示方法。

(8)小结:

通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。

【课堂作业】

完成教材第4页的“做一做”第1题。

组织学生独立完成,指名回答。

答案:

-18℃温度低。

【课堂小结】

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

第2课时负数的初步认识

(2)

【教学内容】

负数的初步认识

(2)(教材第3页例2)。

【教学目标】

通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。

【重点难点】

体会引入负数的必要性,初步理解负数的含义。

【新课讲授】

1.教学例2。

(1)教师出示存折明细示意图。

(教材第3页的主题图)教师:

同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?

组织学生分组讨论、交流,然后指名汇报。

(2)引导学生归纳总结:

像这样的数表示的是存入的钱数;而前面有“-”号的数,像这样的数表示的是支出的钱数。

(3)教师:

上述数据中500和-500意义相同吗?

(500和-500意义相反,一个是存入,一个是支出)。

你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?

说说你是怎么表示的?

师把学生的表示结果一一板书在黑板上。

2.归纳正数和负数。

(1)你能把黑板上板书的这些数进行分类吗?

小组讨论交流。

(2)教师展示分类的结果,适时讲解。

像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。

像-8,-4,-500,-20这样的数,我们把它叫做负数。

(3)那么0应该归为哪一类呢?

组织学生讨论,相互发表意见。

师设难:

“我认为0应该归为正数一类。

归纳:

0既不是正数也不是负数,它是正数和负数的分界点。

(4)你在什么地方见过负数?

教师鼓励学生注意联系实际举出更多的例子。

【课堂作业】

完成教材第4页的“做一做”第2题。

【课堂小结】

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

第3课时在数轴上表示正数、0和负数

【教学内容】

借助数轴理解正数和负数的意义(教材第5页例3)。

【教学目标】

1.借助数轴初步理解正数、0、负数。

2.初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。

【重点难点】

认识数轴、0。

【情景导入】

教师用CAI课件演示教材第5页的主题图。

教师:

如何在一条直线上表示出他们运动后的情况呢?

【新课讲授】

教学例3。

(1)教师:

怎样用数来表示这些学生和大树的相对位置关系呢?

组织学生在小组中议一议,然后汇报。

(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。

(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(4)教师总结:

我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。

(5)引导学生观察数轴

:

①从0起往右依次是?

从0起往左依次是?

你发现什么规律?

②在数轴上分别找到

1.5和-1.5对应的点。

如果从起点分别到1.5和-1.5处,应如何运动?

师及时小结,数轴除了可以表示整数,还可以表示小数、分数。

每个数都能在数轴上找到它们相对应的点。

【课堂作业】

1.完成教材第5页的“做一做”。

学生独立练习,指名汇报。

2.完成教材第6页练习一的第4题。

第4题组织学生独立完成,并在小组中相互交流、检查。

教师用课件出示答案、订正。

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

2百分数

(二)

【教学目标】

1.理解折扣、成数、税率、利率的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。

2.在理解、分析数量关系的基础上,使学生能正确地回答有关百分数的问题。

【重点难点】

利用百分数解决实际问题。

【课时安排】

建议共分5课时:

折扣1课时成数1课时税率1课时利率1课时解决问题1课时

【知识结构】

第1课时折扣

【教学内容】

折扣(教材第8页的内容,练习二第1~3题)。

【教学目标】

1.明确折扣的含义。

2.能熟练地把折扣写成分数、百分数。

3.正确解答有关折扣的实际问题。

4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

【重点难点】

1.会解答有关折扣的实际问题。

2.合理、灵活地选择方法,解答有关折扣的实际问题。

【情景导入】

圣诞节期间各商家搞了哪些促销活动?

谁来说说他们是怎样进行促销的?

(学生汇报调查情况。

【新课讲授】

1.教学折扣的含义,会把折扣改写成百分数。

(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?

比如说打“七折”,你怎么理解?

(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。

(电脑显示)

①大衣,原价:

1000元,现价:

700元。

②围巾,原价:

100元,现价:

70元。

③铅笔盒,原价:

10元,现价:

④橡皮,原价:

1元,现价:

(3)动脑筋想一想:

如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?

如果原价是1元的橡皮,打七折,现价又是多少?

(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?

带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。

(5)讨论,找规律。

(6)归纳,得定义。

(7)练习。

①四折是十分之(),改写成百分数是()。

②六折是十分之(),改写成百分数是()。

③七五折是十分之(),改写成百分数是()。

④九二折是十分之(),改写成百分数是()。

2.运用折扣含义解决实际问题。

出示问题

(1):

爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。

买这辆车用了多少钱?

1导学生分析题意:

打八五折怎么理解?

是以谁为单位“1”?

2找出数量关系式。

3学生独立根据数量关系式,列式解答。

④全班交流。

根据学生的汇报,板书:

180×85%=153(元)

出示问题

(2):

爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

1导学生理解题意:

只花了九折的钱怎么理解?

以谁为单位“1”?

2学生试算,独立列式。

③全班交流。

根据学生的汇报,板书:

第一种算法:

原价160元,减去现价,就是比原价便宜多少钱。

第二种算法:

原价160元,现价比原价便宜了(1-90%)。

重点引导学生理解第二种算法,知道现价比原价便宜了10%。

【课堂作业】

2.完成教材第8页“做一做”练习题。

3.完成教材第13页练习二第1~3题。

【课堂小结】

通过这节课的学习你有什么收获?

【课后作业】

完成练习册中本课时的练习。

第2课时成数

【教学内容】

成数(教材第9页内容)。

【教学目标】

1.明确成数的含义。

2.能熟练的把成数写成分数、百分数。

3.正确解答有关成数的实际问题。

【重点难点】

1.成数的理解。

2.成数的计算。

【情景导入】

农业收成,经常用“成数”来表示。

例如,报纸上写道:

“今年我省油菜籽比去年增产二成”……

教师:

同学们有留意到类似的新闻报道吗?

(学生汇报相关报导)

【新课讲授】

1.介绍成数的含义,会把成数改写成分数,百分数。

(成数:

表示一个数是另一个数的十分之几,通称“几成”)

(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?

比如说,增产“二成”,你怎么理解?

(2)试说说以下成数表示什么?

①出口汽车总量比去年增加三成。

这里的“三成”表示什么?

②北京出游人数比去年增加两成。

这里的两成表示什么?

引导学生讨论并回答。

2.运用成数的含义解决实际问题。

(1)出示教材第9页例2:

某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

(2)分析题目,理解题意:

①今年比去年节电二成五怎么理解?

是以哪个量为单位“1”?

②找出数量关系式。

先让学生找出单位“1”,然后再找出数量关系式:

今年的用电量=去年的用电量×(1-25%)

③学生独立根据关系式,列式解答。

④全班交流。

【课堂作业】

完成教材第9页“做一做”。

【课堂小结】

这节课我们一起学习了有关成数的知识,你们对成数的知识有哪些了解?

【课后作业】

完成练习册中本课时的练习。

第3课时税率

【教学内容】

税率(教材第10页有关纳税的内容,练习二第6、7题)。

【教学目标】

1.使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

2.在计算税款的过程中,加深学生对社会现象的理解,提高学生解决问题的能力。

3.增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

【重点难点】

1.税额的计算。

2.税率的理解。

【情景导入】

1.口答算式。

(1)100的5%是多少?

(2)50吨的10%是多少?

(3)1000元的8%是多少?

(4)50万元的20%是多少?

2.什么是比率?

【新课讲授】

1.阅读教材第10页有关纳税的内容。

说说:

什么是纳税?

2.税率的认识。

(1)说明:

纳税的种类很多,应纳税额的计算方法也不一样。

应纳税额与各种收入的比率叫做税率,一般是由国家根据不同纳税种类定出不同的税率。

(2)试说说以下税率表示什么。

A.商店按营业额的5%缴纳个人所得税。

这里的5%表示什么?

B.某人彩票中奖后,按奖金的20%缴纳个人所得税。

这里的20%表示什么?

3.税款计算。

(1)出示例3:

一家饭店十月份的营业额约是30万元。

如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?

(2)分析题目,理解题意。

引导学生理解“按营业额的5%缴纳营业税”的含义,明确这里的5%是营业税与营业额比较的结果,也就是缴纳的营业税占营业额的5%,题中“十月份的营业额是30万元”,因此十月份应缴纳的营业税就是30万元的5%。

(3)学生列出算式。

求一个数的百分之几是多少,用乘法计算。

列式:

30×5%

(4)学生尝试计算。

(5)汇报交流。

【课堂作业】

1.巩固练习:

教材第10页“做一做”。

2.完成教材第14页练习二第6题。

【课堂小结】

这节课我们一起学习了有关纳税的知识,你们对纳税的知识有哪些了解?

【课后作业】

1.完成练习册中本课时的练习。

2.教材第14页第7题。

第4课时利率

【教学内容】

利率(教材第11页有关利率的内容)。

【教学目标】

1.通过教学使学生知道储蓄的意义;明确本金、利息和利率的含义;掌握计算利息的方法,会进行简单计算。

2.对学生进行勤俭节约,积极参加储蓄以及支援国家、灾区、贫困地区建设的思想品德教育。

【重点难点】

1.掌握利息的计算方法。

2.正确地计算利息,解决利息计算的实际问题。

【教学准备】

多媒体课件。

【新课讲授】

1.介绍存款的种类、形式。

存款分为活期、整存整取和零存整取等方式。

2.阅读教材第11页的内容,自学讨论例4,理解本金、利息、税后利息和利率的含义。

(例如:

王奶奶2012年月8月1日把5000元钱存入银行,整存整取两年,到2013年8月1日,王奶奶不仅可以取回存入的5000元,还可以得到银行多付给的150元,共5150元。

)(注:

这里不考虑利息税)

本金:

存入银行的钱叫做本金。

王奶奶存入的5000元就是本金。

利息:

取款时银行多支付的钱叫做利息。

利率:

利息和本金的比值叫做利率。

(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。

(2)阅读教材第11页表格,了解同一时期各银行的利率是一定的。

3.学会填写存款凭条。

把存款凭条画在黑板上,请学生尝试填写。

然后评讲。

(要填写的项目:

户名、存期、存入金额、存种、密码、地址等,最后填上日期。

4.利息的计算。

(1)出示利息的计算公式:

利息=本金×利率×时间

(2)计算方法:

若按照2012年7月的银行利率,如果王奶奶的5000元钱整存整取,两年到期的利息是多少?

学生计算后交流,教师板书:

5000×3.75%×2=375(元)

加上王奶奶存入的本金5000元,到期时她能得到本金和利息,一共5375元。

【课堂作业】

本题是有关“打折”和“纳税”的问题,是百分数的具体应用,在练习时应让学生说说自己每一步计算的意义,并进行集体订正。

【课堂小结】

通过本节课的学习,你学会了什么?

什么叫本金?

什么叫利息?

什么叫利率?

如何计算利息?

【课后作业】

1.完成练习册中本课时的练习。

2.教材第14页第9题。

第5课时解决问题

【教学内容】

用百分数解决问题。

(教材第12页例5)

【教学目标】

1.熟练地掌握百分数应用题的数量关系,并能解决问题。

2.培养学生良好的学习习惯。

【重点难点】

认真审题,用百分数解决实际问题。

【教学准备】

多媒体课件。

【复习导入】

前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用,今天我们一起来学习它们更多的应用,学习新知识之前,我们来回忆下之前的内容。

口头列式。

(1)妈妈想买一件原价500元的裙子,五折之后这条裙子多少钱?

(2)爸爸这个月工资由原来的6000元涨了一成五,爸爸现在工资是多少?

(3)爸爸的月工资是6000,扣除3500个人免税征额后的部分需要按3%的税率缴纳个人所得税,他应缴个人所得税多少元?

(4)小云将压岁钱1000元存入银行,存期为3年,年利率为4.25%。

到期支取时,小云一共能取回多少钱?

师:

这几道题分别属于什么类型的应用题?

学生交流,汇报。

【新课讲授】

教学例5。

1.学生读题,明确已知条件及问题,尝试说说自己的解题思路。

2.利用提问,引导学生思考回答,归纳出解题思路。

教师:

“满100元减50元”是什么意思?

引导回答:

就是在总价中取整百元部分,每个100元减去50元。

不满100元的零头部分不优惠。

解题思路:

(1)在A商场买,直接用总价乘以50%就能算出实际花费。

(2)在B商场买,先看总价中有几个100,230里有两个100,然后从总价里减去2个50元。

3.学生独立列出算式后,让他们计算并给出结果。

板书:

A:

230×50%=115(元)

B:

230-2×50=130(元)

A

4.回顾与反思。

提问:

通过计算,我们知道了A商场更省钱,在什么时候两个商场价格差不多呢?

反思:

看起来满100减50元不如打五折实惠。

如果总价能凑成整百多一点就差不多了。

【课堂作业】

完成教材第12页“做一做”。

【课堂小结】

通过这节课,你有什么收获,你将如何运用到生活中呢?

【课后作业】

完成练习册中本课时的练习。

3圆柱与圆锥

【教学目标】

1.认识圆柱和圆锥,掌握它们的基本特征。

认识圆柱的底面、侧面和高。

认识圆锥的底面和高。

2.探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决相关的简单实际问题。

3.通过观察、设计和制作圆柱、圆锥模型的活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

使学生经历探索知识的过程,培养学生自主解决问题的能力。

【重点难点】

1.认识并掌握圆柱和圆锥的形体特征,掌握圆柱表面积和体积、圆锥体积的计算方法及推导过程。

2.利用所学的知识解决实际问题。

【课时安排】建议共分10课时:

1.圆柱6课时

2.圆锥3课时

整理和复习1课时

1.圆柱

第1课时圆柱的认识

【教学内容】

圆柱的认识(教材第17~20页)。

【教学目标】

1.使学生了解圆柱的特征,认识圆柱的底面及其直径和半径,圆柱的高、侧面及圆柱的展开图。

2.通过观察,认识圆柱并掌握它的特征,建立空间观念。

3.培养学生的观察能力,增强从实物抽象到几何图形的能力。

【重点难点】

1.理解并掌握圆柱的特征,建立空间观念。

2.明确圆柱沿高展开的侧面展开图是一个长方形(或正方形),理解长方形(侧面展开图)的长和宽与圆柱的底面周长和高的关系。

【情景导入】

师:

今天我给大家带来一位朋友,你们知道它是谁吗?

(师拿起圆柱体模型,让学生一起说出它的名字。

师:

在一年级我们就看见过它,却没有深刻认识它,想不想进一步认识它?

师:

好,那么我们这节课就来认识一下圆柱,一起走近它,看看它究竟有什么奥秘。

(教师板书课题:

圆柱的认识。

【新课讲授】

1.初步感知圆柱。

(1)大家找一找我们生活的周围有哪些圆柱形的物体,谁能说一说?

(师指名回答)

(2)教师展示课件中常见的圆柱形物体。

(3)教师:

这些物体有哪些共同的特点?

大家也可以拿出自己手中的圆柱形物体看一看,摸一摸。

(4)教师又拿出几个不是圆柱,接近圆柱形物体,然后问:

它们是圆柱吗?

为什么?

那么什么样的物体才是真正的圆柱?

学生回答后,教师强调:

圆柱一定是直直的,上下一样粗细。

2.教学例1。

(1)认识圆柱的面。

分组活动,每人拿一个圆柱,摸一摸它的面。

学生互相交流自己的感觉。

启发学生自主探究圆柱的特征。

教师:

圆柱一共有几个面?

用手摸上、下底,看一看有什么特点?

再摸一摸侧面,有什么感觉,它是一个什么面?

学生:

3个面;形状相同,都是圆形,面积相等;曲面。

教师小结:

圆柱的上下两个面叫做底面,它们是完全相同的两个圆。

圆柱的侧面是一个曲面。

教师在黑板上画出圆柱图,并把上下底面、侧面标出来。

(2)认识圆柱的高。

①教师出示高、矮不同的圆柱体提问:

哪个圆柱高,哪个圆柱矮?

②如何测量圆柱的高?

小组讨论,找出测量方法。

然后请一名学生展示自己的测量方法。

(3)教师出示准备好的长方形纸片。

教师:

同学们和我一起快速转动纸片,看一看转出来的是什么形状。

组织学生操作后,汇报结果。

3.教学例2。

(1)请同学们摸一摸你们的圆柱体的侧面,猜想一下,如果把侧面展开后会是什么形状?

(2)组织学生分小组操作:

剪开侧面,再展开。

(3)教师:

你们有什么发现?

会有几种情况出现?

小组之间可以相互交流。

(4)大家再认真观察展开图的长和宽并和圆柱相比较,此时的长相当于圆柱的什么?

宽呢?

学生观察并思考。

教师用课件将长方形还原并再打开。

(5)引导学生思考:

什么情况下圆柱的侧面展开图是正方形?

【课堂作业】

1.完成教材第18、19页的“做一做”。

2.完成教材第20页练习三的第1、2、3题。

【课堂小结】

通过这节课的学习,你有哪些收获?

组织学生畅谈学习的收获。

【课后作业】

完成练习册中本课时的练习。

第2课时圆柱的表面积

(1)

【教学内容】

圆柱的表面积

(1)(教材第21页例3)。

【教学目标】

1.理解圆柱的表面积的意义。

2.探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。

【重点难点】

1.掌握圆柱的侧面积和表面积的计算方法。

2.理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。

【教学准备】

多媒体课件和圆柱体模型。

【复习导入】

1.复习引入。

指名学生说出圆柱的特征。

2.口头回答下面的问题。

(1)一个圆形花池,直径是5m,周长是多少?

(2)长方形的面积怎样计算?

板书:

长方形的面积=长×宽。

【新课讲授】

1.教师出示圆柱形实物,师生共同研究圆柱的侧面积。

2.教学例3。

(1)圆柱的表面积的含义。

(2)计算圆柱的表面积。

①师:

圆柱的表面展开后是什么样的?

组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。

引导学生说出:

圆柱的表面是由两个底面和一个侧面组成。

②组织学生自主探究、交流,该如何计算圆柱的表面积。

指名发言,教师归纳:

圆柱的表面积=圆柱的侧面积+两个底面积。

(3)巩固练习:

教材第21页“做一做”。

组织学生独立完成,请两名学生板演后集体订正。

【课堂小结】

通过这节课的学习,你有哪些收获?

【课后作业】

完成练习册中本课时的练习。

第3课时圆柱的表面积

(2)

【教学内容】

圆柱的表面积

(2)(教材第22页例4)

【教学目标】

能灵活运用求圆柱侧面积、表面积的相关知识,解决生活中的实际问题。

【重点难点】

运用圆柱的表面积公式解决问题。

【教学准备】

多媒体课件和圆柱体模型。

【复习导入】

前面我们已经学习了圆柱的表面积计算公式,有同学能说一说么?

指名学生回答。

板书:

圆柱的表面积=圆柱的侧面积+两个底面面积

圆柱的侧面积=圆柱的底面周长×高

【新课讲授】

教学例4。

(1)出示例4。

学生读题,明确已知条件:

已知圆柱的高和底面直径,求表面积。

(2)求厨师帽所用的材料,需要注意:

厨师帽没有下底面,说明它只有一个底面。

(3)指定两名学生板演,其他学生独立进行计算。

教师巡视,注意看学生所算最后的得数是否正确。

(4)巩固练习。

①教材第22页“做一做”第1题。

组织学生独立完成。

②教材第22页第2题。

请三名学生板演,其余同学做在草稿本上。

【课堂作业】

完成教材第23~24页练习四的第7~12题。

【课堂小结】

通过这节课的学习,你有哪些收获?

【课后作业】

完成练习册中本课时的练习。

第4课时圆柱的体积

(1)

【教学内容】

圆柱的体积(教材第25页例5)。

【教学目标】

探索并掌握圆

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 初中作文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1