五年级奥数题精选及答案.docx

上传人:b****7 文档编号:10603749 上传时间:2023-02-21 格式:DOCX 页数:17 大小:27.16KB
下载 相关 举报
五年级奥数题精选及答案.docx_第1页
第1页 / 共17页
五年级奥数题精选及答案.docx_第2页
第2页 / 共17页
五年级奥数题精选及答案.docx_第3页
第3页 / 共17页
五年级奥数题精选及答案.docx_第4页
第4页 / 共17页
五年级奥数题精选及答案.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

五年级奥数题精选及答案.docx

《五年级奥数题精选及答案.docx》由会员分享,可在线阅读,更多相关《五年级奥数题精选及答案.docx(17页珍藏版)》请在冰豆网上搜索。

五年级奥数题精选及答案.docx

五年级奥数题精选及答案

五年级奥数题精选

姓名:

学校:

班级分数:

1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。

那么有多少人两个小组都不参加?

 

2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。

那么语文成绩得满分的有多少人?

3、50名同学面向老师站成一行。

老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。

问:

现在面向老师的同学还有多少名?

 

4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。

按奖券标签号发放奖品的规则如下:

(1)标签号为2的倍数,奖2支铅笔;

(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。

那么游艺会为该项活动准备的奖品铅笔共有多少支?

5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。

问绳子共被剪成了多少段?

 

答案:

1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人

2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)

3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=34

4,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227

5,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90

 

例1有4堆外表上一样的球,每堆4个。

已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。

解:

依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。

例2有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。

解:

第一次:

把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。

若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。

第二次:

把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。

第三次:

从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。

例3把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。

解:

把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。

把A、B两组分别放在天平的两个盘上去称,则

(1)若A=B,则A、B中都是正品,再称B、C。

如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。

如B<C,仿照B>C的情况也可得出结论。

(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?

)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。

(3)若A<B,类似于A>B的情况,可分析得出结论。

练习有12个外表上一样的球,其中只有一个是次品,用天平只称三次,你能找出次品吗?

奥赛专题--鸡兔同笼问题

[专题介绍]鸡兔同笼问题是指在应用题中给出了鸡和兔子的总头数和总腿数,求鸡和兔子各有多少只的一类问题。

鸡兔同笼问题在解答过程中用到假设的思路,可以假设都是兔子,这样总腿数就比实际腿数要多,多出来的腿数就是把鸡当兔子多算的,因此再除以一只鸡比一只兔子少的腿数就可以求得鸡有多少只。

也可以假设成都是鸡,这样就可以求得兔有多少只。

[经典例题]例1鸡兔同笼,头共46,足共128,鸡兔各几只?

[分析]:

如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?

显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:

①鸡有多少只?

(4×6-128)÷(4-2)

=(184-128)÷2

=56÷2

=28(只)

②免有多少只?

46-28=18(只)

答:

鸡有28只,免有18只。

[总结]:

先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:

鸡数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)

兔数=鸡兔总数-鸡数

当然,也可以先假设全是鸡。

例2鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?

[分析]:

这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?

假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。

解:

(2×100-80)÷(2+4)=20(只)。

100-20=80(只)。

答:

鸡与兔分别有80只和20只。

例3红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?

[分析1]我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。

结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?

解法1:

一班:

[135-5+(7-5)]÷3=132÷3

=44(人)

二班:

44+5=49(人)

三班:

49-7=42(人)

答:

三年级一班、二班、三班分别有44人、49人和42人。

[分析2]假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?

解法2:

(135+5+7)÷3=147÷3=49(人)

49-5=44(人),49-7=42(人)

答:

三年级一班、二班、三班分别有44人、49人和42人。

例4刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?

[分析]我们分步来考虑:

①假设租的10条船都是大船,那么船上应该坐6×10=60(人)。

②假设后的总人数比实际人数多了60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。

③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。

解:

[6×10-(41+1)÷(6-4)

=18÷2=9(条)10-9=1(条)

答:

有9条小船,1条大船。

例5有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?

[分析]这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为6×18=108(条),所差118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).

解:

①假设蜘蛛也是6条腿,三种动物共有多少条腿?

6×18=108(条)

②有蜘蛛多少只?

(118-108)÷(8-6)=5(只)

③蜻蜒、蝉共有多少只?

18-5=13(只)

④假设蜻蜒也是一对翅膀,共有多少对翅膀?

1×13=13(对)

⑤蜻蜒多少只?

(20-13)÷2-1)=7(只)

答:

蜻蜒有7只.

参考资料:

小数专业网

过桥问题

(1)

1.一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?

分析:

这道题求的是通过时间。

根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。

路程是用桥长加上车长。

火车的速度是已知条件。

总路程:

(米)

通过时间:

(分钟)

答:

这列火车通过长江大桥需要17.1分钟。

2.一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?

分析与解答:

这是一道求车速的过桥问题。

我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。

可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。

总路程:

(米)

火车速度:

(米)

答:

这列火车每秒行30米。

3.一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?

分析与解答:

火车过山洞和火车过桥的思路是一样的。

火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。

这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。

总路程:

山洞长:

(米)

答:

这个山洞长60米。

和倍问题

1.秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?

我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?

(1)秦奋和妈妈年龄倍数和是:

4+1=5(倍)

(2)秦奋的年龄:

40÷5=8岁

(3)妈妈的年龄:

8×4=32岁

综合:

40÷(4+1)=8岁8×4=32岁

为了保证此题的正确,验证

(1)8+32=40岁

(2)32÷8=4(倍)

计算结果符合条件,所以解题正确。

2.甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?

已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。

看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。

甲乙飞机的速度分别每小时行800千米、400千米。

3.弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?

思考:

(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?

(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?

(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?

思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。

根据条件需要先求出哥哥剩下多少本课外书。

如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。

(1)兄弟俩共有课外书的数量是20+25=45。

(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。

(3)哥哥剩下的课外书的本数是45÷3=15。

(4)哥哥给弟弟课外书的本数是25-15=10。

试着列出综合算式:

4.甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?

根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。

根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。

于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。

最后就可求出甲库原来存粮多少吨。

甲库原存粮130吨,乙库原存粮40吨。

列方程组解应用题

(一)

1.用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?

依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。

两个等量关系是:

A做盒身张数+做盒底的张数=铁皮总张数

B制出的盒身数×2=制出的盒底数

用86张白铁皮做盒身,64张白铁皮做盒底。

奇数与偶数

(一)

其实,在日常生活中同学们就已经接触了很多的奇数、偶数。

凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。

因为偶数是2的倍数,所以通常用这个式子来表示偶数(这里是整数)。

因为任何奇数除以2其余数都是1,所以通常用式子来表示奇数(这里是整数)。

奇数和偶数有许多性质,常用的有:

性质1两个偶数的和或者差仍然是偶数。

例如:

8+4=12,8-4=4等。

两个奇数的和或差也是偶数。

例如:

9+3=12,9-3=6等。

奇数与偶数的和或差是奇数。

例如:

9+4=13,9-4=5等。

单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。

性质2奇数与奇数的积是奇数。

偶数与整数的积是偶数。

性质3任何一个奇数一定不等于任何一个偶数。

1.有5张扑克牌,画面向上。

小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?

同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。

要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。

5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。

而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。

所以无论他翻动多少次,都不能使5张牌画面都向下。

2.甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。

那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?

不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。

所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。

如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。

否则甲盒子中的黑子数不变。

也就是说,李平每次从甲盒子拿出的黑子数都是偶数。

由于181是奇数,奇数减偶数等于奇数。

所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。

奥赛专题--称球问题

例1有4堆外表上一样的球,每堆4个。

已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。

解:

依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。

2有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。

解:

第一次:

把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。

若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。

第二次:

把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。

第三次:

从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。

例3把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。

解:

把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。

把A、B两组分别放在天平的两个盘上去称,则

(1)若A=B,则A、B中都是正品,再称B、C。

如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。

如B<C,仿照B>C的情况也可得出结论。

(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?

)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。

(3)若A<B,类似于A>B的情况,可分析得出结论。

奥赛专题--抽屉原理

【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。

为什么?

【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。

如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。

【例2】任意4个自然数,其中至少有两个数的差是3的倍数。

这是为什么?

【分析与解】首先我们要弄清这样一条规律:

如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。

而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。

我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。

换句话说,4个自然数分成3类,至少有两个是同一类。

既然是同一类,那么这两个数被3除的余数就一定相同。

所以,任意4个自然数,至少有2个自然数的差是3的倍数。

【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?

【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?

回答是否定的。

按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。

拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。

如果再补进2只,又可取得第3双。

所以,至少要取6+2+2=10只袜子,就一定会配成3双。

思考:

1.能用抽屉原理2,直接得到结果吗?

2.把题中的要求改为3双不同色袜子,至少应取出多少只?

3.把题中的要求改为3双同色袜子,又如何?

【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?

【分析与解】从最“不利”的取出情况入手。

最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。

接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。

故总共至少应取出10+5=15个球,才能符合要求。

思考:

把题中要求改为4个不同色,或者是两两同色,情形又如何?

当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路。

奥赛专题--还原问题

【例1】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。

这时他的存折上还剩1250元。

他原有存款多少元?

【分析】从上面那个“重新包装”的事例中,我们应受到启发:

要想还原,就得反过来做(倒推)。

由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,从而“余下的一半”是1250+100=1350(元)

余下的钱(余下一半钱的2倍)是:

1350×2=2700(元)

用同样道理可算出“存款的一半”和“原有存款”。

综合算式是:

[(1250+100)×2+50]×2=5500(元)

还原问题的一般特点是:

已知对某个数按照一定的顺序施行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。

解还原问题,通常应当按照与运算或增减变化相反的顺序,进行相应的逆运算。

【例2】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。

哥哥看弟弟挑得太多,就拿来一半给自己。

弟弟觉得自己能行,又

从哥哥那里拿来一半。

哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块。

问最初弟弟准备挑多少块?

【分析】我们得先算出最后哥哥、弟弟各挑多少块。

只要解一个“和差问题”就知道:

哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块。

提示:

解还原问题所作的相应的“逆运算”是指:

加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几。

对于一些比较复杂的还原问题,要学会列表,借助表格倒推,既能理清数量关系,又便于验算。

奥赛专题--鸡兔同笼问题

例1鸡兔同笼,头共46,足共128,鸡兔各几只?

[分析]:

如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?

显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:

①鸡有多少

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1