十七中室外风环境模拟分析实施报告.docx

上传人:b****7 文档编号:10560688 上传时间:2023-02-21 格式:DOCX 页数:13 大小:392.13KB
下载 相关 举报
十七中室外风环境模拟分析实施报告.docx_第1页
第1页 / 共13页
十七中室外风环境模拟分析实施报告.docx_第2页
第2页 / 共13页
十七中室外风环境模拟分析实施报告.docx_第3页
第3页 / 共13页
十七中室外风环境模拟分析实施报告.docx_第4页
第4页 / 共13页
十七中室外风环境模拟分析实施报告.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

十七中室外风环境模拟分析实施报告.docx

《十七中室外风环境模拟分析实施报告.docx》由会员分享,可在线阅读,更多相关《十七中室外风环境模拟分析实施报告.docx(13页珍藏版)》请在冰豆网上搜索。

十七中室外风环境模拟分析实施报告.docx

十七中室外风环境模拟分析实施报告

室外风环境模拟分析报告

北京市第十七中学分校改扩建工程

 

建筑专业

 

主持人:

(设计总负责人)

审定人:

校审人:

计算人:

 

北京中帝恒成建筑设计有限公司

2016年02月18日

1建筑概况

工程名称

北京市第十七中学分校改扩建工程

工程地点

北京市朝阳区第十七中学百子湾校区内

气候子区

寒冷

建筑面积

地上5861.93㎡地下3321.8㎡

建筑层数

地上5地下2

建筑高度

地上18.0m地下8.4m

北向角度

2评价依据

1.北京市《绿色建筑评价标准》DB11T825-2011

2.《民用建筑设计通则》GB50352-2005

3.《民用建筑供暖通风与空气调节设计规范》GB50736-2012

4.《实用供热空调设计手册》

3分析方法

3.1原理概述

建筑群和高大建筑物会显著改变城市近地面层风场结构。

近地风的状况与建筑物的外形、尺寸、建筑物之间的相对位置以及周围地形地貌有着很复杂的关系。

在有较强来流时,建筑物周围某些地区会出现强风;如果这些强风区出现在建筑物入口、通道、露台等行人频繁活动的区域,则可能使行人感到不舒适、甚至带来伤害,形成恶劣的风环境问题。

在一般的气候条件下,他们直接影响着城市环境的小气候和环境的舒适性;一旦遇到大风,这种影响往往会变成灾害,使建筑外墙局部的玻璃幕墙、窗扇、雨棚等受到破坏,威胁着室内外的安全。

高层建筑群室外人行区域最容易形成再生风和二次风问题,导致冬季室外风速过大,行人难以停留。

图1室外空气流动与建筑之间所产生的效用示意图

建筑合理布局是改善室外行人区热舒适的关键;主要是避免在寒冷冬季室外行人区风速加速,如风巷效应,同时在与冬季主导风向垂直方向最好增加裙房,加大底座尺寸,避免冲刷效应和边角效应等,如图1所示。

调查统计显示:

在建筑周围行人区,若平均风速V>5m/s的出现频率小于10%,行人不会有什么抱怨(在10%大风情况下建筑周围行人区风速小于5m/s,即可认为建筑周围行人区是舒适的);频率在10%~20%之间,抱怨将增多;频率大于20%则应采取补救措施以减小风速。

另外,行人在风速分布不均区域活动时,若在小于2m的距离内平均风速变化达70%,即从低风速区突然进入高风速区,人对风的适应能力将大减。

因此在设计阶段,应对建筑物的室外风环境做出评价,分析建筑之间位置关系对室外风环境的影响。

同时,室外风环境深刻影响建筑室内风环境,特别对建筑防风与自然通风有着决定性影响。

冬季建筑防风,有效减少气流渗透,降低采暖能耗,而夏季与过渡季节的自然通风则能降低建筑空调能耗。

自然通风主要有以下3种作用:

舒适通风、降温通风、健康通风。

通过通风增加人的舒适度,从而提高人体热舒适感觉;通过建筑周围气流将建筑周边以及房间里的热量散发到空气中去;同时通过通风,为室内提供新鲜空气,降低室内二氧化碳浓度。

建筑室外风环境模拟分析,主要考虑室外风场以及室外风环境对室内环境影响两方面内容。

3.2模拟软件

本项目采用CFD手段对建筑及周围的微环境进行模拟分析,评价室外流场分布状况。

模拟计算采用的Phoenics软件可以对三维稳态或非稳态的可压缩流或不可压缩流进行模拟,包括非牛顿流、多孔介质中的流动,并且可以考虑粘度、密度、温度变化的影响。

在流体模型上面,Phoenics内置了22种适合于各种Re数场合的湍流模型,包括雷诺应力模型、多流体湍流模型和通量模型及k-e模型的各种变异,共计21个湍流模型,8个多相流模型,10多个差分格式,由于较好的结构化网格的适应性,使得Phoenics能达到较佳的收敛速度和求解精度。

广泛的应用于航空航天、能源动力、船舶水利、暖通空调、建筑、石油化工、冶金及核工业领域。

3.3计算原理

CFD方法是针对流体流动的质量守恒、动量守恒和能量守恒建立数学控制方程,其一般形式如下所示:

该式中的φ可以是速度、湍流动能、湍流耗散率以及温度等。

针对不同的方程,其具体表现形式如表1。

 

表1计算流体力学的控制方程

名称

变量

连续性方程

1

0

0

x速度

y速度

z速度

湍流

动能

湍流

耗散

温度

表1中的常数如下:

计算

其中

如果

,则

,其中

3.4模型设置

本报告根据建筑总平面图以及其他相关资料建立本项目的室外风环境模拟模型,分析模型中包括本项目的建筑物及其周边建筑物。

模型外场尺寸选择主要以不影响建筑群边界气流流动为准,外场计算尺寸为298m×292m×90m(宽×长×高)。

划分工具采用PHOENICS软件自带网格工具进行网格划分,此过程中考虑了多种网格划分方式,如果网格划分过细,会造成计算速度降低过大,局部网格畸变严重等问题,如果网格划分过大,会造成计算精度下降,局部无法识别等问题,在综合考虑网格质量、计算速度和精度,以及充分考虑了建筑体量和建筑物所在基地大小的基础上,选择X×Y×Z=102×110×40,共448800个网格进行计算,主要区域网格尺寸为2m。

网格效果如图2所示。

图2网格效果图

3.5参数设置

1)梯度风设置

建筑来流方向风速为均匀分布,不同高度平面上的来流风速大小沿建筑高度方向按梯度递增。

模拟分析时按大气边界层理论设置来流风速,不同地形的风速梯度不同。

根据相关标准,不同地貌情况下入口梯度风的指数α取值如表2所示。

根据项目周边情况,模拟中梯度风指数取城市郊区类的α值。

表2大气边界层不同地貌的α值

类别

空旷平坦地面

城市郊区

大城市中心

α

0.14

0.22

0.28

2)模拟说明

鉴于此项目主要分析人行高度处的风环境质量,因此,可以选取人行高度1.5m处的风速矢量图、云图、建筑整体表面压力分布图来说明其周围的风环境状况,并给予分析及评价。

3)出流边界条件

建筑出流面上空气流动按湍流充分发展考虑,边界条件按自由出口设定。

4)计算曲线

Phoenics数值模拟代数方程的终止标准按连续性方程与动量方程残差为1.0E-2,但由于计算量较大,根据经验,监测点值变化不大时,就可认为计算准确,本次模拟所有工况迭代次数均在2000次以上。

5)模拟工况

本项目位于北京市,根据《实用供热空调设计手册》确定模拟工况,各工况的具体风向和风速设置如表3所示。

表3模拟工况

序号

相应工况需分析的内容

主导风向

环境平均风速(m/s)

工况1

冬季平均风速条件下的防风状况

NE

2.6

工况2

夏季平均风速条件下的自然通风状况

SSW

2.2

工况3

过渡季平均风速条件下的自然通风状况

NW

2.2

4评价标准

北京市《绿色建筑评价标准》DB11/T825-2011第5.1.9条规定:

优化场地风环境,保证室外活动区域的舒适性和建筑通风,控制建筑物周围人行区域距地面1.5m高处的风速低于5m/s。

5模拟结果和分析

5.1风环境模拟模型

参评建筑

5.2工况1(冬季平均风速工况)

模拟冬季平均风速情况下的建筑周边流场分布状况时,设定风向为NE,风速为2.6m/s。

1.风速矢量图

解析:

由图可以看到,项目东向为操场,较为开阔,气流主要从东北方向角进入参评区,北侧和西侧的周边建筑起到了一定的挡风作用,有利于参评区的冬季防风。

参评建筑周边风速均小于5m/s。

2.风速云图

最大风速2.3m/s

解析:

风速分布在0.02~2.3m/s之间,最大风速出现在宿舍楼东南角,风速放大系数约为1.2。

冬季室外风速适宜,不影响室外行人的正常活动的同时,有利于排除参评区内产生的污浊气体。

5.3工况2(夏季平均风速工况)

模拟夏季平均风速情况下的建筑周边流场分布状况时,设定风向为SSW,风速为2.2m/s。

1.风速矢量图

解析:

西南向周边建筑布局相对稀疏,气流阻力小。

故夏季室外气流组织顺畅,可以促进参评区内污浊空气的扩散。

参评建筑周边风速均小于5m/s。

2.风速云图

最大风速2.5m/s

解析:

参评区受到周边建筑的遮挡影响小,人行高度处的风速分布在0.5~2.5m/s之间,风速大小适宜,最大风速出现在宿舍楼的西侧,风速放大系数1.3。

故本项目夏季室外风速大小适宜,气流组织顺畅,可以促进夏季参评区的散热,且不会对行人的室外活动产生不利影响。

5.4工况3(过渡季平均风速工况)

模拟过渡季平均风速情况下的建筑周边流场分布状况时,设定风向为NW,风速为2.2m/s。

1.风速矢量图

解析:

过渡季室外气流组织顺畅,可以促进参评区内污浊空气的扩散。

参评建筑周边风速均小于5m/s。

2.风速云图

最大风速3m/s

解析:

人行高度处的风速处于合理的范围之内,风速分布在0.2~3m/s之间,最大风速出现在宿舍楼的东北角,风速放大系数1.4。

参评区内过渡季风速大小适宜,气流组织非常顺畅,可以保证参评区与外界的空气有效交换,故过渡季室外风环境良好。

6结论

本报告主要对十七中学宿舍楼室外风环境状况进行模拟,选取了夏季、冬季和过渡季平均风速工况对建筑周边人行区域环境的舒适性进行分析,室外风环境模拟风速及其放大系数汇总如表4所示。

表4本项目室外风速状况

序号

相应工况需分析的内容

最大风速

(m/s)

最大风速放大系数

达标判断

工况1

冬季平均风速条件下的防风状况

2.3

1.2

工况2

夏季平均风速条件下的自然通风状况

2.5

1.3

工况3

过渡季平均风速条件下的自然通风状况

3

1.4

不同季节不同来流风速工况下,参评区场地内1.5m高处的室外风速均小于5m/s,风速放大系数小于2。

风速大小适宜,分布均匀,冬季不会影响室外行人的活动,且有利于夏季和过渡季室外通风散热和排除污染物。

根据上述分析,本项目室外风环境满足北京市《绿色建筑评价标准》DB11/T825-2011第5.1.9条评分项的要求。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 哲学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1