专训2 三角形内角和与外角的几种常见应用类型春冀教版七下数学.docx
《专训2 三角形内角和与外角的几种常见应用类型春冀教版七下数学.docx》由会员分享,可在线阅读,更多相关《专训2 三角形内角和与外角的几种常见应用类型春冀教版七下数学.docx(4页珍藏版)》请在冰豆网上搜索。
专训2三角形内角和与外角的几种常见应用类型春冀教版七下数学
专训2三角形内角和与外角的几种常见应用类型
名师点金:
三角形内角和与外角有着广泛的应用,利用它们可以解决有关角的很多问题,一般可用于直接计算角度、三角尺或直尺中求角度、与平行线的性质综合求角度、截角或折叠问题中求角度等.
直接计算角度
(第1题)
1.如图,在△ABC中,∠A=60°,∠B=40°,点D,E分别在BC,AC的延长线上,则∠1=________.
2.在△ABC中,三个内角∠A,∠B,∠C满足∠B-∠A=∠C-∠B,则∠B=________.
三角尺或直尺中求角度
3.把一个直尺与一块三角尺按如图所示的方式放置,若∠1=40°,则∠2的度数为( )
A.125°B.120°C.140°D.130°
(第3题)
(第4题)
4.一副三角尺ABC和DEF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED∥BC,则∠CEF的度数为________.
5.一副三角尺如图所示摆放,以AC为一边,在△ABC外作∠CAF=∠DCE,边AF交DC的延长线于点F,求∠F的度数.
(第5题)
与平行线的性质综合求角度
6.如图,AB∥CD,∠ABE=60°,∠D=50°,求∠E的度数.
(第6题)
与截角和折叠综合求角度
7.如图,在△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2等于( )
(第7题)
A.360°
B.250°
C.180°
D.140°
8.△ABC是一个三角形的纸片,点D,E分别是△ABC边AB,AC上的两点.
(1)如图①,如果沿直线DE折叠,则∠BDA′与∠A的关系是____________;
(2)如果折成图②的形状,猜想∠BDA′,∠CEA′和∠A的关系,并说明理由;
(3)如果折成图③的形状,猜想∠BDA′,∠CEA′和∠A的关系,并说明理由.
(第8题)
答案
1.80° 2.60° 3.D 4.15°
5.解:
因为∠BCA=90°,∠DCE=30°,
所以∠ACF=180°-∠BCA-∠DCE=180°-90°-30°=60°.
因为∠CAF=∠DCE=30°,
所以∠F=180°-∠CAF-∠ACF=180°-30°-60°=90°.
6.解:
因为AB∥CD,
所以∠CFE=∠ABE=60°.
因为∠D=50°,
所以∠E=∠CFE-∠D=60°-50°=10°.
7.B
8.解:
(1)∠BDA′=2∠A
(2)∠BDA′+∠CEA′=2∠A,
理由:
∵在四边形ADA′E中,
∠A+∠A′+∠ADA′+∠A′EA=360°,
∴∠A+∠A′=360°-∠ADA′-∠A′EA.
∵∠BDA′+∠ADA′=180°,∠CEA′+∠A′EA=180°,
∴∠BDA′+∠CEA′=360°-∠ADA′-∠A′EA,
∴∠BDA′+∠CEA′=∠A+∠A′.
∵△A′DE是由△ADE沿直线DE折叠而得,
∴∠A=∠A′,∴∠BDA′+∠CEA′=2∠A.
(3)∠BDA′-∠CEA′=2∠A.
理由:
设DA′交AC于点F,
∵∠BDA′=∠A+∠DFA,∠DFA=∠A′+∠CEA′,
∴∠BDA′=∠A+∠A′+∠CEA′,
∴∠BDA′-∠CEA′=∠A+∠A′.
∵△A′DE是由△ADE沿直线DE折叠而得,
∴∠A=∠A′,
∴∠BDA′-∠CEA′=2∠A.