高层控制指标的意义及控制.docx

上传人:b****8 文档编号:10449308 上传时间:2023-02-11 格式:DOCX 页数:15 大小:30.12KB
下载 相关 举报
高层控制指标的意义及控制.docx_第1页
第1页 / 共15页
高层控制指标的意义及控制.docx_第2页
第2页 / 共15页
高层控制指标的意义及控制.docx_第3页
第3页 / 共15页
高层控制指标的意义及控制.docx_第4页
第4页 / 共15页
高层控制指标的意义及控制.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

高层控制指标的意义及控制.docx

《高层控制指标的意义及控制.docx》由会员分享,可在线阅读,更多相关《高层控制指标的意义及控制.docx(15页珍藏版)》请在冰豆网上搜索。

高层控制指标的意义及控制.docx

高层控制指标的意义及控制

[转]高层控制指标的意义及控制,高层六个比的控制(十九章)

在风中聆听细雨2010-05-3016:

37:

04阅读161评论0  字号:

大中小 订阅

 

高层主要控制指标的目的在于:

控制结构平面规则性和竖向规则性、结构稳定和P-△二阶效应。

一.结构扭转效应的控制(《高规》4.3.5要求)

1.周期比:

是控制结构在大震时,扭转振型不应靠前,以减少震害;

周期比应符合《高规》4.3.5要求。

该指标输出在SATWE计算之WZQ.out文件中。

规范条文:

《高规》4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。

计算方法:

对于通常的规则单塔楼结构,如下验算周期比:

1)根据各振型的平动系数、扭转系数区分出各振型分别是扭转振型还是平动振型

2)周期最长的扭振振型对应的就是第一扭振周期Tt,周期最长的侧振振型对应的就是第一侧振周期T1

3)计算Tt/T1,看是否超过0.9(0.85)

多塔结构周期比:

对于多塔楼结构,不能直接按上面的方法验算。

这时应该将多塔结构分成多个单塔,按多个结构分别计算、分别验算(注意不是在同一结构中定义多塔,而是按塔分成多个结构)

周期比控制目的:

周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。

一句话,周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性。

不满足时的调整方法:

一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。

周期比不满足要求,

说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是要加强结构外圈,或者削弱内筒。

2.位移比:

取楼层最大杆间位移与楼层平均杆间位移的比值,位移比是控制结构的扭转效应;

位移比应符合《高规》4.3.5要求。

该指标输出在SATWE计算之WDISP.out文件中。

规范条文:

《高规》4.3.5条规定,楼层竖向构件的最大水平位移和层间位移,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值

的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

最大位移:

墙顶、柱顶节点的最大位移

平均位移:

墙顶、柱顶节点的最大位移与最小位移之和除2

最大层间位移:

墙、柱层间位移的最大值

平均层间位移:

墙、柱层间位移的最大值与最小值之和除2

程序处理:

针对此条,程序中对每一层都计算并输出最大水平位移、最大层间位移角、平均水平位移、平均层间位移角及相应的比值,用户可以一目了然地判断是否满足规范。

注意:

1)验算位移比可以选择强制刚性楼板假定

2)验算位移比需要考虑偶然偏心,验算层间位移角则不需要考虑偶然偏心

3)位移比超过1.2,需要考虑双向地震

注:

1.最大层间位移:

按规范要求取楼层竖向构件最大杆件位移称为楼层控制层间位移;

2.最大层间位移、位移比是在刚性楼板假设下的控制参数。

构件设计与位移信息不是在同一条件下的结果(即构件设计可以采用弹性楼板计算,而位移计算必须在刚性楼板假设下获得),故可先采用刚性楼板算出位移用于送审,而后采用弹性楼板进行构件分析。

一旦出现周期比不能满足要求的情况,一般只能通过调整平面布置来改善。

这种改善一般是整体性的,局部小调整往往收效甚微。

一句话,周期比控制的不是在要结构足够结实,而是在承载力布局合理性,限制结构抗扭刚度不能太弱。

二.竖向不规则的控制(《高规》4.4要求)

1.层刚度比:

主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层

新规范要求结构各层之间的刚度比,并根据刚度比对地震力进行放大,所以刚度比的合理计算较为重要。

新规范对结构的层刚度有明确的要求,在判断楼层是否为薄弱层、地下室是否能作为嵌固端、转换层刚度是否满足要求等等,都要求有层刚度作为依据,所以层刚度计算的准确性就比较重要。

层刚度比应符合《高规》4.4.2要求。

该指标输出在SATWE计算之WMASS.out文件中。

规范条文:

1)抗震规范附录E2.1规定,筒体结构转换层上下层的侧向刚度比不宜大于2;

2)《高规》4.4.2条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80%;

3)《高规》5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍;

4)《高规》10.2.3条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录E的规定:

三种方案可供选择:

高规附录E.0.1建议的方法——剪切刚度Ki=GiAi/hi

高规附录E.0.2建议的方法——剪弯刚度Ki=Vi/Δi

抗震规范的3.4.2和3.4.3条文说明中建议方法Ki=Vi/Δui

¨抗震规范(第三种)方法为通用方法,也是程序的缺省方式,通常工程均可采用此种办法

¨底部大空间为一层时,刚度比计算可采用剪切刚度

¨底部大空间为多层时,刚度比计算可采用剪弯刚度

¨三种方法算出的楼层刚度可能差别很大,属正常,可以不必奇怪

2.层承载力比:

控制竖向不规则性

层承载力比应符合《高规》4.4.3要求。

该指标输出在SATWE计算之WMASS.out文件中。

规范条文:

《高规》4.4.3条规定:

A级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的80%,不应小于其上一层受剪承载力的65%;B级高度建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的75%。

3.剪重比:

主要为控制各楼层最小地震剪力,确保结构安全性

剪重比应符合《高规》3.3.13要求:

满足各楼层最小剪力要求。

该指标输出在SATWE计算之WZQ.out文件中。

规范条文:

《高规》3.3.13条规定:

抗震验算时,结构任一楼层的水平地震的剪重比不应小于表3.3.13给出的最小地震剪力系数λ。

注:

1.刚度比控制

(1)剪切刚度;

(2)弯剪刚度;

(3)抗规3.4.2中定义的刚度。

选用方法如下:

(1)对于多层(砌体、砖混底框),宜采用刚度1;

(2)对于带斜撑的钢结构,宜采用刚度2;

(3)多数结构宜采用刚度3。

(所有的结构均可用刚度3)

三.结构稳定控制(《高规》5.4要求)

1.刚重比:

主要为控制结构的稳定性,以免结构产生滑移和倾覆

刚重比应符合《高规》5.4要求:

重力二阶效应及结构稳定。

该指标输出在SATWE计算之WMASS.out文件中。

四.正常使用状态控制(《高规》4.6要求)

1.层间位移角:

位移角应符合《高规》4.6.3要求:

满足层间最大位移/层高要求。

该指标输出在SATWE计算之WDISP.out文件中。

规范条文:

《高规》4.6.3条规定:

按弹性方法计算的楼层层间最大位移与层高之比宜符合表4.6.3的限值。

五.其他控制指标

1.有效质量系数:

有效质量系数应符合《高规》5.1.13要求:

振型数≥15,有效质量系数≥90%。

该指标输出在SATWE计算之WZQ.out文件中。

规范条文:

《高规》5.1.13条规定:

规定对B级高度高层建筑及复杂高层建筑有效质量系数不小于0.9;抗规(5.2.2)条文说明建议有效质量系数可取为0.9

=======================================================

高层六个比的控制

1.位移比(层间位移比):

1.1名词释义:

(1)位移比:

即楼层竖向构件的最大水平位移与平均水平位移的比值。

(2)层间位移比:

即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:

最大水平位移:

墙顶、柱顶节点的最大水平位移。

平均水平位移:

墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:

墙、柱层间位移与层高的比值。

最大层间位移角:

墙、柱层间位移角的最大值。

平均层间位移角:

墙、柱层间位移角的最大值与最小值之和除2。

1.3控制目的:

高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:

1保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

1.2相关规范条文的控制:

[抗规]3.4.2条规定,建筑及其抗侧力结构的平面布置宜规则,对称,并应具有良好的整体性,当存在结构平面扭转不规则时,楼层的最大弹性水平位移(或层间位移),不宜大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍。

[高规]4.3.5条规定,楼层竖向构件的最大水平位移和层间位移,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

[高规]4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:

结构休系Δu/h限值

框架1/550

框架-剪力墙,框架-核心筒1/800

筒中筒,剪力墙1/1000

框支层1/1000

1.4电算结果的判别与调整要点:

PKPM软件中的SATWE程序对每一楼层计算并输出最大水平位移、最大层间位移角、平均水平位移、平均层间位移角及相应的比值,详位移输出文件WDISP.OUT。

但对于计算结果的判读,应注意以下几点:

(1)若位移比(层间位移比)超过1.2,则需要在总信息参数设置中考虑双向地震作用;

(2)验算位移比需要考虑偶然偏心作用,验算层间位移角则不需要考虑偶然偏心

(3)验算位移比应选择强制刚性楼板假定,但当凸凹不规则或楼板局部不连续时,应采用符合楼板平面内实际刚度变化的计算模型,当平面不对称时尚应计及扭转影响

(4)最大层间位移、位移比是在刚性楼板假设下的控制参数。

构件设计与位移信息不是在同一条件下的结果(即构件设计可以采用弹性楼板计算,而位移计算必须在刚性楼板假设下获得),故可先采用刚性楼板算出位移,而后采用弹性楼板进行构件分析。

如果没有勾选刚性楼板假定这一项,意味着当该房间定义了板厚为零或全房间洞时,楼层就会产生"弹性节点",普通楼面只要不开洞的楼板还是按刚性假定计算内力,即平面内无限刚,平面外为零。

在特殊构件里定义不同类型的弹性楼板和不勾选刚性楼板假定的区别是后者会自动对有楼板的房间默认为刚性楼板。

(5)因为高层建筑在水平力作用下,几乎都会产生扭转,故楼层最大位移一般都发生在结构单元的边角部位。

2.周期比:

2.1名词释义:

周期比即结构扭转为主的第一自振周期(也称第一扭振周期)Tt与平动为主的第一自振周期(也称第一侧振周期)T1的比值。

周期比主要控制结构扭转效应,减小扭转对结构产生的不利影响,使结构的抗扭刚度不能太弱。

因为当两者接近时,由于振动藕连的影响,结构的扭转效应将明显增大。

2.2相关规范条文的控制:

[高规]4.3.5条规定,结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比(即周期比),A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。

[高规]5.1.13条规定,高层建筑结构计算振型数不应小于9,抗震计算时,宜考虑平扭藕连计算结构的扭转效应,振型数不小于15,对于多塔楼结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

2.3电算结果的判别与调整要点:

(1).计算结果详周期、地震力与振型输出文件。

因SATWE电算结果中并未直接给出周期比,故对于通常的规则单塔楼结构,需人工按如下步骤验算周期比:

(SATWE结果文件的周期未考虑折减,但在进行计算时程序内部自动考虑。

a)根据各振型的两个平动系数和一个扭转系数(三者之和等于1)判别各振型分别是扭转为主的振型(也称扭振振型)还是平动为主的振型(也称侧振振型)。

一般情况下,当扭转系数大于0.5时,可认为该振型是扭转振型,反之应为侧振振型。

当然,对某些极为复杂的结构还应结合主振型信息来进行判断;

b)周期最长的扭转振型对应的就是第一扭振周期Tt,周期最长的侧振振型对应的就是第一侧振周期T1;

c)计算Tt/T1,看是否超过0.9(0.85)。

对于多塔结构周期比,不能直接按上面的方法验算,这时应该将多塔结构分成多个单塔,按多个结构分别计算、分别验算(注意不是在同一结构中定义多塔,而是按塔分成多个结构)。

(2).对于刚度均匀的结构,在考虑扭转耦连计算时,一般来说前两个或几个振型为其主振型,但对于刚度不均匀的复杂结构,上述规律不一定存在。

总之在高层结构设计中,使得扭转振型不应靠前,以减小震害。

SATWE程序中给出了各振型对基底剪力贡献比例的计算功能,通过参数Ratio(振型的基底剪力占总基底剪力的百分比)可以判断出那个振型是X方向或Y方向的主振型,并可查看以及每个振型对基底剪力的贡献大小。

(3).振型分解反应谱法分析计算周期,地震力时,还应注意两个问题,即计算模型的选择与振型数的确定。

一般来说,当全楼作刚性楼板假定后,计算时宜选择"侧刚模型"进行计算。

而当结构定义有弹性楼板时则应选择"总刚模型"进行计算较为合理。

至于振型数的确定,应按上述[高规]5.1.13条执行,振型数是否足够,应以计算振型数使振型参与质量不小于总质量的90%作为唯一的条件进行判别。

(4).如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。

即周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性。

考虑周期比限制以后,以前看来规整的结构平面,从新规范的角度来看,可能成为"平面不规则结构"。

一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。

周期比不满足要求,说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是要加强结构外圈,或者削弱内筒。

(5).扭转周期控制及调整难度较大,要查出问题关键所在,采取相应措施,才能有效解决问题。

a)扭转周期大小与刚心和形心的偏心距大小无关,只与楼层抗扭刚度有关;

b)剪力墙全部按照同一主轴两向正交布置时,较易满足;周边墙与核心筒墙成斜交布置时要注意检查是否满足;

c)当不满足周期限制时,若层位移角控制潜力较大,宜减小结构竖向构件刚度,增大平动周期;

d)当不满足周期限制时,且层位移角控制潜力不大,应检查是否存在扭转刚度特别小的层,若存在应加强该层的抗扭刚度;

e)当不满足扭转周期限制,且层位移角控制潜力不大,各层抗扭刚度无突变,说明核心筒平面尺度与结构总高度之比偏小,应加大核心筒平面尺寸或加大核心筒外墙厚,增大核心筒的抗扭刚度。

f)当计算中发现扭转为第一振型,应设法在建筑物周围布置剪力墙,不应采取只通过加大中部剪力墙的刚度措施来调整结构的抗扭刚度。

可以适当减少建筑中间刚度,加大建筑周边刚度的方法来提高建筑的抗扭刚度,一般建筑边梁的截面高度在满足建筑要求的情况下,可以适当的取大点这样有助于提高建筑的抗扭刚度。

周期比只是控制扭转效应的间接指标,所以当某一工程出现周期比大于规范要求,而且又很难进行调整使其满足规范要求时,可以主要通过位移比的限制来控制结构的扭转效应,因为位移比为结构的响应,此指标更为直接,在响应不大的情况下,通过适当的提高抗震构造措施,也是能够合理的控制结构的扭转效应的。

3刚度比

3.1名词释义:

刚度比指结构竖向不同楼层的侧向刚度的比值(也称层刚度比),该值主要为了控制高层结构的竖向规则性,以免竖向刚度突变,形成薄弱层。

对于地下室结构顶板能否作为嵌固端,转换层上、下结构刚度能否满足要求,及薄弱层的判断,均以层刚度比作为依据。

[抗规]与[高规]提供有三种方法计算层刚度,即剪切刚度(Ki=GiAi/hi)、剪弯刚度(Ki=Vi/Δi)、地震剪力与地震层间位移的比值(Ki=Qi/Δui)。

3.2相关规范条文的控制:

[抗规]附录E2.1规定,筒体结构转换层上下层的侧向刚度比不宜大于2;

[高规]4.4.2条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80%;

[高规]5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍;

[高规]10.2.3条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录E的规定:

E.01)底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2。

E.02)底部大空间层数大于一层时,其转换层上部框架-剪力墙结构的与底部大空间层相同或相近高度的部分的等效侧向刚度与转换层下部的框架-剪力墙结构的等效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。

3.3电算结果的判别与调整要点:

(1)规范对结构层刚度比和位移比的控制一样,也要求在刚性楼板假定条件下计算。

对于有弹性板或板厚为零的工程,应计算两次,在刚性楼板假定条件下计算层刚度比并找出薄弱层,然后在真实条件下完成其它结构计算。

(2)层刚比计算及薄弱层地震剪力放大系数的结果详建筑结构的总信息WMASS.OUT。

一般来说,结构的抗侧刚度应该是沿高度均匀或沿高度逐渐减少,但对于框支层或抽空墙柱的中间楼层通常表现为薄弱层,由于薄弱层容易遭受严重震害,故程序根据刚度比的计算结果或层间剪力的大小自动判定薄弱层,并乘以放大系数,以保证结构安全。

当然,薄弱层也可在调整信息中通过人工强制指定。

(3)对于上述三种计算层刚度的方法,我们应根据实际情况进行选择:

对于底部大空间为一层时或多层建筑及砖混结构应选择"剪切刚度";对于底部大空间为多层时或有支撑的钢结构应选择"剪弯刚度";而对于一般工程来说,则可选用第三种规范建议方法,此法也是SATWE程序的默认方法。

抗震设计的框架-剪力墙结构,在基本振型地震作用下,框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的50%时,其框架部分的抗震等级应按框架结构采用,柱轴压比限值宜按框架结构的规定采用;其最大适用高度和高宽比限值可比框架结构适当增加。

4.刚重比

4.1名词释义:

结构的侧向刚度与重力荷载设计值之比称为刚重比。

它是影响重力二阶效应的主要参数,且重力二阶效应随着结构刚重比的降低呈双曲线关系增加。

高层建筑在风荷载或水平地震作用下,若重力二阶效应过大则会引起结构的失稳倒塌,故控制好结构的刚重比,则可以控制结构不失去稳定。

4.2相关规范条文的控制:

[高规]5.4.4条规定:

1、对于剪力墙结构,框剪结构,筒体结构稳定性必须符合下列规定:

--结构一个主轴方向的弹性等效侧向刚度,可以按倒三角形分布荷载作用下顶点位移,相等的原则,将结构的侧向刚度折算为竖向悬臂受弯构件的等效侧向刚度;

H--房屋高度;

--第i楼层重力荷载设计值;

2、.对于框架结构稳定性必须符合下列规定:

Di*Hi/Gi>=10

4.3电算结果的判别与调整要点:

2.对于剪切型的框架结构,当刚重比大于10时,则结构重力二阶效应可控制在20%以内,结构的稳定已经具有一定的安全储备;当刚重比大于20时,重力二阶效应对结构的影响已经很小,故规范规定此时可以不考虑重力二阶效应。

3.对于弯剪型的剪力墙结构、框剪结构、筒体结构,当刚重比大于1.4时,结构能够保持整体稳定;当刚重比大于2.7时,重力二阶效应导致的内力和位移增量仅在5%左右,故规范规定此时可以不考虑重力二阶效应。

2.若结构刚重比(Ejd/GH2)>1.4,则满足整体稳定条件,SATWE输出结果参考WMASS.OUT,

3.高层建筑的高宽比满足限值时,可不进行稳定验算,否则应进行。

4.当高层建筑的稳定不满足上述规定时,应调整并增大结构的侧向刚度。

5、剪重比:

5.1名词释义:

剪重比即最小地震剪力系数λ,主要是控制各楼层最小地震剪力,尤其是对于基本周期大于3.5s的结构,以及存在薄弱层的结构,出于对结构安全的考虑,规范增加了对剪重比的要求。

5.2相关规范条文的控制:

[抗规]5.2.5条与[高规]3.3.13条规定,抗震验算时,结构任一楼层的水平地震剪力不应小于下表给出的最小地震剪力系数λ。

类别7度7.5度8度8.5度9度

扭转效应明显或基本周期小于3.5S的结构:

0.0160.0240.0320.0480.064

基本周期大于5.0S的结构:

0.0120.0180.0240.0320.040

5.3电算结果的判别与调整要点:

(1).对于竖向不规则结构的薄弱层的水平地震剪力应增大1.15倍,即上表中楼层最小剪力系数λ应乘以1.15倍。

当周期介于3.5S和5.0S之间时,可对于上表采用插入法求值。

(2).对于一般高层建筑而言,结构剪重比底层为最小,顶层最大,故实际工程中,结构剪重比由底层控制,由下到上,哪层的地震剪力不够,就放大哪层的设计地震内力.

(3).结构各层剪重比及各楼层地震剪力调整系数自动计算取值,结果详SATWE周期、地震力与振型输出文件WZQ.OUT)

(4).各层地震内力自动放大与否在调整信息栏设开关;如果用户考虑自动放大,SATWE将在WZQ.OUT中输出程序内部采用的放大系数.

(5).6度区剪重比可在0.7%~1%取。

若剪重比过小,均为构造配筋,说明底部剪力过小,要对构件截面大小、周期折减等进行检查;若剪重比过大,说明底部剪力很大,也应检查结构模型,参数设置是否正确或结构布置是否太刚。

6、轴压比

6.1名词释义:

柱(墙)轴压比,指柱(墙)轴压力设计值与柱(墙)的全截面面积和混凝土轴心抗压强度设计值乘积之比。

它是影响墙柱抗震性能的主要因素之一,为了使柱墙具有很好的延性和耗能能力,规范采取的措施之一就是限制轴压比。

6.2相关规范条文的控制:

[砼规]11.4.16条[抗规]6.3.7条,[高规]6.4.2条同时规定:

柱轴压比不宜超过下表中限值。

结构类型抗震等级一二三

1、框架结构0.70.80.9

2、框剪、板柱-抗震墙、框筒、筒体0.750.850.95

3、部分框支抗震墙0.60.7--

结构体系本身抗震性能较好的话,轴压比的限制就放得相对较宽!

抗震性能:

2>1>3;

[砼规]11.7.13条[

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 管理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1