主减速器设计.docx

上传人:b****3 文档编号:1013459 上传时间:2022-10-15 格式:DOCX 页数:26 大小:764.71KB
下载 相关 举报
主减速器设计.docx_第1页
第1页 / 共26页
主减速器设计.docx_第2页
第2页 / 共26页
主减速器设计.docx_第3页
第3页 / 共26页
主减速器设计.docx_第4页
第4页 / 共26页
主减速器设计.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

主减速器设计.docx

《主减速器设计.docx》由会员分享,可在线阅读,更多相关《主减速器设计.docx(26页珍藏版)》请在冰豆网上搜索。

主减速器设计.docx

主减速器设计

主减速器设计

 

 

————————————————————————————————作者:

————————————————————————————————日期:

 

第三节 主减速器设计

一、主减速器结构方案分析

主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。

主减速器的齿轮主要有螺旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。

1.螺旋锥齿轮传动

螺旋锥齿轮传动(图5-3a)的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。

另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,所以它工作平稳、能承受较大的负荷、制造也简单。

但是在工作中噪声大,对啮合精度很敏感,齿轮副锥顶稍有不吻合便会使工作条件急剧变坏,并伴随磨损增大和噪声增大。

为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。

图5—3 主减速器齿轮传动形式

a)螺旋锥齿轮传动b)双曲面齿轮传动c)圆柱齿轮传动 d)蜗杆传动

2.双曲面齿轮传动

双曲面齿轮传动(图5-3b)的主、从动齿轮的轴线相互垂直而不相交,主动齿轮轴线相对从动齿轮轴线在空间偏移一距离E,此距离称为偏移距。

由于偏移距E的存在,使主动齿轮螺旋角大于从动齿轮螺旋角(图5—4)。

根据啮合面上法向力相等,可求出主、从动齿轮圆周力之比

  (5-1)

图5-4双曲面齿轮副受力情况

式中,F1、F2分别为主、从动齿轮的圆周力;β1、β2分别为主、从动齿轮的螺旋角。

螺旋角是指在锥齿轮节锥表面展开图上的齿线任意一点A的切线TT与该点和节锥顶

点连线之间的夹角。

在齿面宽中点处的螺旋角称为中点螺旋角(图5—4)。

通常不特殊说

明,则螺旋角系指中点螺旋角。

双曲面齿轮传动比为

      (5-2)

式中,为双曲面齿轮传动比;、分别为主、从动齿轮平均分度圆半径。

螺旋锥齿轮传动比为

               (5-3)

令,则。

由于>,所以系数K>1,一般为1.25~1.50。

这说明:

1)当双曲面齿轮与螺旋锥齿轮尺寸相同时,双曲面齿轮传动有更大的传动比。

2)当传动比一定,从动齿轮尺寸相同时,双曲面主动齿轮比相应的螺旋锥齿轮有较大的直径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。

3)当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮直径比相应的螺旋锥齿轮为小,因而有较大的离地间隙。

另外,双曲面齿轮传动比螺旋锥齿轮传动还具有如下优点:

1)在工作过程中,双曲面齿轮副不仅存在沿齿高方向的侧向滑动,而且还有沿齿长方向的纵向滑动。

纵向滑动可改善齿轮的磨合过程,使其具有更高的运转平稳性。

2)由于存在偏移距,双曲面齿轮副使其主动齿轮的大于从动齿轮的,这样同时啮合的齿数较多,重合度较大,不仅提高了传动平稳性,而且使齿轮的弯曲强度提高约30%。

3)双曲面齿轮传动的主动齿轮直径及螺旋角都较大,所以相啮合轮齿的当量曲率半径较相应的螺旋锥齿轮为大,其结果使齿面的接触强度提高。

4)双曲面主动齿轮的变大,则不产生根切的最小齿数可减少,故可选用较少的齿数,有利于增加传动比。

5)双曲面齿轮传动的主动齿轮较大,加工时所需刀盘刀顶距较大,因而切削刃寿命较长。

6)双曲面主动齿轮轴布置在从动齿轮中心上方,便于实现多轴驱动桥的贯通,增大传动轴的离地高度。

布置在从动齿轮中心下方可降低万向传动轴的高度,有利于降低轿车车身高度,并可减小车身地板中部凸起通道的高度。

但是,双曲面齿轮传动也存在如下缺点:

1)沿齿长的纵向滑动会使摩擦损失增加,降低传动效率。

双曲面齿轮副传动效率约为96%,螺旋锥齿轮副的传动效率约为99%。

2)齿面间大的压力和摩擦功,可能导致油膜破坏和齿面烧结咬死,即抗胶合能力较低。

3)双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。

4)双曲面齿轮传动必须采用可改善油膜强度和防刮伤添加剂的特种润滑油,螺旋锥齿轮传动用普通润滑油即可。

由于双曲面齿轮具有一系列的优点,因而它比螺旋锥齿轮应用更广泛。

一般情况下,当要求传动比大于4.5而轮廓尺寸又有限时,采用双曲面齿轮传动更合理。

这是因为如果保持主动齿轮轴径不变,则双曲面从动齿轮直径比螺旋锥齿轮小。

当传动比小于2时,双曲面主动齿轮相对螺旋锥齿轮主动齿轮显得过大,占据了过多空间,这时可

选用螺旋锥齿轮传动,因为后者具有较大的差速器可利用空间。

对于中等传动比,两种齿轮

传动均可采用。

3.圆柱齿轮传动

圆柱齿轮传动(图5—3c)一般采用斜齿轮,广泛应用于发动机横置且前置前驱动的轿

车驱动桥(图5—5)和双级主减速器贯通式驱动桥。

图5—5 发动机横置且前置前驱动轿车驱动桥

4.蜗杆传动

蜗杆(图5—3d)传动与锥齿轮传动相比有如下优点:

1)在轮廓尺寸和结构质量较小的情况下,可得到较大的传动比(可大于7)。

2)在任何转速下使用均能工作得非常平稳且无噪声。

3)便于汽车的总布置及贯通式多桥驱动的布置。

4)能传递大的载荷,使用寿命长。

5)结构简单,拆装方便,调整容易。

但是由于蜗轮齿圈要求用高质量的锡青铜制作,故成本较高;另外,传动效率较低。

蜗杆传动主要用于生产批量不大的个别重型多桥驱动汽车和具有高转速发动机的大客车上。

主减速器的减速形式可分为单级减速、双级减速、双速减速、单双级贯通、单双级减速

配以轮边减速等。

1.单级主减速器

单级主减速器(图5—6)可由一对圆锥齿轮、

一对圆柱齿轮或由蜗轮蜗杆组成,具有结构简单、

质量小、成本低、使用简单等优点。

但是其主传

动比不能太大,一般≤7,进一步提高将

增大从动齿轮直径,从而减小离地间隙,且使从

动齿轮热处理困难。

单级主减速器广泛应用于轿车和轻、中型货

车的驱动桥中。

2.双级主减速器

双级主减速器(图5—7)与单级相比,在保

证离地间隙相同时可得到大的传动比,一般为

7~12。

但是尺寸、质量均较大,成本较高。

它主

要应用于中、重型货车、越野车和大客车上。

整体式双级主减速器有多种结构方案:

第一

级为锥齿轮,第二级为圆柱齿轮(图5—8a);第

一级为锥齿轮,第二级为行星齿轮;第一级为行

星齿轮,第二级为锥齿轮(图5—8b);第一级为

圆柱齿轮,第二级为锥齿轮(图5—8c)。

       图5—6单级主减速器

对于第一级为锥齿轮、第二级为圆柱齿轮的双级主减速器,可有纵向水平(图5—8d)、

斜向(图5—8e)和垂向(图5—8f)三种布置方案。

纵向水平布置可以使总成的垂向轮廓尺寸减小,从而降低汽车的质心高度,但使纵向尺

寸增加,用在长轴距汽车上可适当减小传动轴长度,但不利于短轴距汽车的总布置,会使传

动轴过短,导致万向传动轴夹角加大。

垂向布置使驱动桥纵向尺寸减小,可减小万向传动轴

夹角,但由于主减速器壳固定在桥壳的上方,不仅使垂向轮廓尺寸增大,而且降低了桥壳刚

度,不利于齿轮工作。

这种布置可便于贯通式驱动桥的布置。

斜向布置对传动轴布置和提高

桥壳刚度有利。

在具有锥齿轮和圆柱齿轮的双级主减速器中分配传动比时,圆柱齿轮副和锥齿轮副传动

比的比值一般为1.4~2.O,而且锥齿轮副传动比一般为1.7~3.3,这样可减小锥齿轮啮合

时的轴向载荷和作用在从动锥齿轮及圆柱齿轮上的载荷,同时可使主动锥齿轮的齿数适当增

多,使其支承轴颈的尺寸适当加大,以改善其支承刚度,提高啮合平稳性和工作可靠性。

3.双速主减速器

双速主减速器(图5—9)内由齿轮的不同组合可获得两种传动比。

它与普通变速器相

配合,可得到双倍于变速器的挡位。

双速主减速器的高低挡减速比是根据汽车的使用条件、

发动机功率及变速器各挡速比的大小来选定的。

大的主减速比用于汽车满载行驶或在困难道

路上行驶,以克服较大的行驶阻力并减少变速器中间挡位的变换次数;小的主减速比则用于

汽车空载、半载行驶或在良好路面上行驶,以改善汽车的燃料经济性和提高平均车速。

图5-7双级主减速器

图5-8双级主减速器布置方案

双速主减速器可以由圆柱齿轮组(图5-9a)或行星齿轮组(图5-9b)构成。

圆柱齿

轮式双速主减速器结构尺寸和质量较大,可获得的主减速比较大。

只要更换圆柱齿轮轴、去

掉一对圆柱齿轮,即可变型为普通的双级主减速器。

行星齿轮式双速主减速器结构紧凑,质

量较小,具有较高的刚度和强度,桥壳与主减速器壳都可与非双速通用,但需加强行星轮系

和差速器的润滑。

图5—9 双速主减速器

a)圆柱齿轮式b)行星齿轮式

1-太阳轮 2-齿圈3-行星齿轮架 4-行星齿轮5-接合齿轮

对于行星齿轮式双速主减速器,当汽车行驶条件要求有较大的牵引力时,驾驶员通过操

纵机构将啮合套及太阳轮推向右方(图示位置),接合齿轮5的短齿与固定在主减速器上的

接合齿环相接合,太阳轮1就与主减速器壳联成一体,并与行星齿轮架3的内齿环分离,而

仅与行星齿轮4啮合。

于是,行星机构的太阳轮成为固定轮,与从动锥齿轮联成一体的齿圈

2为主动轮,与差速器左壳联在一起的行星齿轮架3为从动件,行星齿轮起减速作用,其减

速比为(1+a),a为太阳轮齿数与齿圈齿数之比。

在一般行驶条件下,通过操纵机构使啮

合套及太阳轮移到左边位置,啮合套的接合齿轮5与固定在主减速器壳上的接合齿环分离,

太阳轮1与行星齿轮4及行星齿轮架3的内齿环同时啮合,从而使行星齿轮无法自转,行星

齿轮机构不再起减速作用。

显然,此时双速主减速器相当于一个单级主减速器。

双速主减速器的换挡是由远距离操纵机构实现的,一般有电磁式、气压式和电一气压综

合式操纵机构。

由于双速主减速器无换挡同步装置,因此其主减速比的变换是在停车时进行

的。

双速主减速器主要在一些单桥驱动的重型汽车上采用。

4.贯通式主减速器

贯通式主减速器(图5-10,图5-11)根据其减速形式可分成单级和双级两种。

单级

贯通式主减速器具有结构简单,体积小,质量小,并可使中、后桥的大部分零件,尤其是使

桥壳、半轴等主要零件具有互换性等优点,主要用于轻型多桥驱动的汽车上。

根据减速齿轮形式不同,单级贯通式主减速器又可分为双曲面齿轮式及蜗轮蜗杆式两种

结构。

双曲面齿轮式单级贯通式主减速器(图5-lOa)是利用双曲面齿轮副轴线偏移的特

图5—10 单级贯通式主减速器

a)双曲面齿轮式b)蜗轮蜗杆式

点,将一根贯通轴穿过中桥并通向后桥。

但是这种结构受主动齿轮最少齿数和偏移距大小的

限制,而且主动齿轮工艺性差,主减速比最大值仅在5左右,故多用于轻型汽车的贯通式驱

动桥上。

当用于大型汽车时,可通过增设轮边减速器或加大分动器速比等方法来加大总减速

比。

蜗轮蜗杆式单级贯通式主减速器(图5—10b)在结构质量较小的情况下可得到较大的

速比。

它使用于各种吨位多桥驱动汽车的贯通式驱动桥的布置。

另外,它还具有工作平滑无

声、便于汽车总布置的优点。

如蜗杆下置式布置方案被用于大客车的贯通式驱动桥中,可降

低车厢地板高度。

对于中、重型多桥驱动的汽车,由于主减速比较大,多采用双级贯通式主减速器。

根据

齿轮的组合方式不同,可分为锥齿轮一圆柱齿轮式和圆柱齿轮一锥齿轮式两种形式。

锥齿轮

一圆柱齿轮式双级贯通式主减速器(图5—11a)可得到较大的主减速比,但是结构高度尺

寸大,主动锥齿轮工艺性差,从动锥齿轮采用悬臂式支承,支承刚度差,拆装也不方便。

柱齿轮一锥齿轮式双级贯通式主减速器(图5—11b)的第一级圆柱齿轮副具有减速和贯通

的作用。

有时仅用作贯通用.将其速比设计为1。

在设计中应根据中、后桥锥齿轮的布置、

旋转方向、双曲面齿轮的偏移方式以及圆柱齿轮副在锥齿轮副前后的布置位置等因素来确定

锥齿轮的螺旋方向,所选的螺旋方向应使主、从动锥齿轮有相斥的轴向力

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1