温度计实验报告1.docx

上传人:b****7 文档编号:10101668 上传时间:2023-02-08 格式:DOCX 页数:22 大小:717.83KB
下载 相关 举报
温度计实验报告1.docx_第1页
第1页 / 共22页
温度计实验报告1.docx_第2页
第2页 / 共22页
温度计实验报告1.docx_第3页
第3页 / 共22页
温度计实验报告1.docx_第4页
第4页 / 共22页
温度计实验报告1.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

温度计实验报告1.docx

《温度计实验报告1.docx》由会员分享,可在线阅读,更多相关《温度计实验报告1.docx(22页珍藏版)》请在冰豆网上搜索。

温度计实验报告1.docx

温度计实验报告1

温度计实验报告1

河南理工大学

单片机课程设计报告

 

姓名:

王静杨晓雪

学号:

0828030090/0828010150

专业:

电气工程及其自动化

指导老师:

李宏伟

时间:

2011年6月24日

 

摘要:

在这个信息化高速发展的时代,单片机作为一种最经典的微控制器,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,作为自动化专业的学生,我们学习了单片机,就应该把它熟练应用到生活之中来。

本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。

本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。

关键词:

单片机,数字控制,数码管显示,温度计,DS18B20,AT89S52。

 

2.2.3温度传感器…………………………………………………………5

2.3DS18B20温度传感器与单片机的接口电路..........................7

 

附录1……………………………………………………………………………………………...17

附录2………………………………………………………………………………...22

1概述

1.1设计目的随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。

本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,可广泛用于食品库、冷库、粮库、温室大棚等需要控制温度的地方。

目前,该产品已在温控系统中得到广泛的应用。

1.2设计原理本系统是一个基于单片机AT89S52的数字温度计的设计,用来测量环境温度,测量范围为-50℃—110℃度。

整个设计系统分为4部分:

单片机控制、温度传感器、数码显示以及键盘控制电路。

整个设计是以AT89S52为核心,通过数字温度传感器DS18B20来实现环境温度的采集和A/D转换,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。

单片机把采集到的温度进行相应的转换后,使之能够方便地在数码管上输出。

LED采用四位一体共阴的数码管。

1.3设计难点此设计的重点在于编程,程序要实现温度的采集、转换、显示和上下限温度报警,其外围电路所用器件较少,相对简单,实现容易。

2系统总体方案及硬件设计

2.1数字温度计设计方案论证

由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。

进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。

2.2总体设计框图

温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,用4位共阴LED数码管以串口传送数据实现温度显示。

图1总体设计框图

2.2.1主控制器

单片机AT89S52具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,适合便携手持式产品的设计使用。

2.2.2显示电路

显示电路采用4位共阴LED数码管,从P0口输出段码,P2.0—P2.3作片选端。

但在焊电路板的时候发现数码管亮度不够,所以在P2.0—P2.3端口接四个10K的电阻和四个NPN的三极管,以使数码管高亮显示。

2.2.3温度传感器

DS18B20温度传感器是美国DALLAS半导体公司推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9-12位的数字值读数方式。

DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结构框图如图2所示。

图2DS18B20内部结构

64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。

温度报警触发器TH和TL,可通过软件写入用户报警上下限。

DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。

高速暂存RAM的结构为8字节的存储器,结构如图3所示。

头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。

第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。

DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。

该字节各位的定义如图3所示。

低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率。

温度LSB

温度MSB

TH用户字节1

TL用户字节2

配置寄存器

保留

保留

保留

CRC

 

图3DS18B20字节定义

由下面表1可见,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。

因此,在实际应用中要将分辨率和转换时间权衡考虑。

高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。

第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。

当DS18B20接收到温度转换命令后,开始启动转换。

转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。

单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。

当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。

表2是一部分温度值对应的二进制温度数据。

表1DS18B20温度转换时间表

DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。

若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。

因此,可用多只DS18B20同时测量温度并进行报警搜索。

在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。

主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。

2.3DS18B20温度传感器与单片机的接口电路

图4DS18B20与单片机的接口电路

DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。

另一种是寄生电源供电方式,如图4所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉,多个DS18B20可以将2口串接到一条总线上,而本设计只用了一个DS18B20。

当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。

采用寄生电源供电方式时VDD端接地。

由于单线制只有一根线,因此发送接口必须是三态的。

2.4系统整体硬件电路设计

2.4.1主板电路

系统整体硬件电路包括,传感器数据采集电路,温度显示电路,上下限报警调整电路,单片机主板电路等,单片机主板电路如图5所示:

图5单片机主板电路

图5中包括时钟振荡电路和按键复位电路,按键复位电路是上电复位加手动复位,使用比较方便,在程序跑飞时,可以手动复位,这样就不用在重起单片机电源,就可以实现复位。

另外扩展电路中,蜂鸣器可以在被测温度不在上下限范围内时,发出报警鸣叫声音,同时LED数码管将没有被测温度值显示,这时可以调整报警上下限,从而测出被测的温度值。

2.4.2显示电路

显示电路是使用的串口显示,这种显示最大的优点就是使用口资源比较少,只用P0和P3口,串口的发送和接收,采用4位共阴LED数码管,从P0口输出段码,P2.0—P2.3作片选端。

但在焊电路板的时候发现数码管亮度不够,所以在P2.0—P2.3端口接四个10K的电阻和四个NPN的三极管,期望增加驱动电流,以使数码管高亮显示。

图6温度显示电路

3系统软件设计

系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序等。

3.1初始化程序

 

图7初始化程序流程图

3.2读出温度子程序

读出温度子程序的主要功能是读出RAM中的2字节,读出温度的低八位和高八位,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。

其程序流程图如图8示

 

图8读温度程序流程图

3.3读、写时序子程序

读写的程序是本次设计中的重点和难点,通过我们对其时序的分析,从而写出高效的程序。

写1,0时序

读0,1时序

 

 

 

3.4延时程序

延时程序主要分为短延时和长延时,短延时如果要求十分的精确可以采用定时器,如果要求不太高的话可以采用普通函数的叠加,可以近似时间的延时。

长延时同样的道理,不过要求不是很精确的话,可以采取语言结构的循环来实现延时。

具体程序如下:

表3delay15()延时函数的取值采样:

n的取值

1

2

3

4

10

15

20

22

23

24

时间

17us

48us

69us

90us

216us

321us

426us

468us

489us

510us

4Proteus软件仿真

     

 

5课程设计体会

经过将两周的单片机课程设计,终于完成了我们的数字温度计的设计,虽然没有完全达到设计要求,但从心底里说,还是高兴的,毕竟这次设计把实物都做了出来,高兴之余不得不深思呀!

在本次设计的过程中,我发现很多的问题,虽然以前还做过这样的设计但这次设计真的让我长进了很多,单片机课程设计重点就在于软件算法的设计,需要有很巧妙的程序算法,虽然以前写过几次程序,但我觉的写好一个程序并不是一件简单的事,举个例子,以前写的那几次,数据加减时,我用的都是BCD码,这一次,我全部用的都是16进制的数直接加减,显示处理时在用对不同的位,求商或求余,感觉效果比较好。

还有时序的问题,通过这次的设计我明白了时序才真正是数字芯片的灵魂,所有的程序我们都可以通过对其时序的理解来实现对其操作,同时体会到了单总线结构的魅力。

从这次的课程设计中,我真真正正的意识到,在以后的学习中,要理论联系实际,把我们所学的理论知识用到实际当中,学习单机片机更是如此,程序只有在经常的写与读的过程中才能提高,这就是我在这次课程设计中的最大收获。

最重要的是本次设计是两个人一组,让我们有种组队做单片机开发项目的感觉,毕竟一个项目只靠一个人是很难完成的,今后我们做的项目肯定要多人协作。

在这次设计过程中培养了我们的团队协作精神,便于我们走到工作岗位后能很快适应工作环境。

 

参考文献

[1]DS18b20数据手册。

[2]求是科技编著8051系列单片机C程序设计完全手册北京:

人民邮电出版社,2006

[3]余发山,王福忠.单片机原理及应用技术.徐州:

中国矿业大学出版社,2003

 

 

附录1:

程序名称:

DS18B20温度测量、报警系统

简要说明:

DS18B20温度计,温度测量范围0~99.9摄氏度

可设置上限报警温度、下限报警温度

即高于上限值或者低于下限值时蜂鸣器报警

默认上限报警温度为38℃、默认下限报警温度为5℃

报警值可设置范围:

最低上限报警值等于当前下限报警值

最高下限报警值等于当前上限报警值

将下限报警值调为0时为关闭下限报警功能

******************************************************************/

#include

#include"DS18B20.h"

#defineuintunsignedint

#defineucharunsignedchar//宏定义

#defineSETP3_1//定义调整键

#defineDECP3_2//定义减少键

#defineADDP3_3//定义增加键

#defineBEEPP3_7//定义蜂鸣器

bitshanshuo_st;//闪烁间隔标志

bitbeep_st;//蜂鸣器间隔标志

sbitDIAN=P0^7;//小数点

ucharx=0;//计数器

signedcharm;//温度值全局变量

ucharn;//温度值全局变量

ucharset_st=0;//状态标志

signedcharshangxian=38;//上限报警温度,默认值为38

signedcharxiaxian=5;//下限报警温度,默认值为38

ucharcodeLEDData[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x00};

unsignedintReadTemperature(void);

/*****延时子程序*****/

voidDelay(uintnum)

{

while(--num);

}

/*****初始化定时器0*****/

voidInitTimer(void)

{

TMOD=0x1;

TH0=0x3c;

TL0=0xb0;//50ms(晶振12M)

}

/*****定时器0中断服务程序*****/

voidtimer0(void)interrupt1using0

{

TH0=0x3c;

TL0=0xb0;

x++;

}

/*****外部中断0服务程序*****/

voidint0(void)interrupt0using1

{

EX0=0;//关外部中断0

if(DEC==0&&set_st==1)

{

shangxian--;

if(shangxian

}

elseif(DEC==0&&set_st==2)

{

xiaxian--;

if(xiaxian<0)xiaxian=0;

}

}

/*****外部中断1服务程序*****/

voidint1(void)interrupt2using2

{

EX1=0;//关外部中断1

if(ADD==0&&set_st==1)

{

shangxian++;

if(shangxian>99)shangxian=99;

}

elseif(ADD==0&&set_st==2)

{

xiaxian++;

if(xiaxian>shangxian)xiaxian=shangxian;

}

}

/*****读取温度*****/

voidcheck_wendu(void)

{

uinta,b,c;

c=ReadTemperature()-5;//获取温度值并减去DS18B20的温漂误差

a=c/100;//计算得到十位数字

b=c/10-a*10;//计算得到个位数字

m=c/10;//计算得到整数位

n=c-a*100-b*10;//计算得到小数位

if(m<0){m=0;n=0;}//设置温度显示上限

if(m>99){m=99;n=9;}//设置温度显示上限

}

/*****显示开机初始化等待画面*****/

Disp_init()

{

P0=0x40;//显示-

P2=0xf7;

Delay(200);

P2=0xfb;

Delay(200);

P2=0xfd;

Delay(200);

P2=0xfe;

Delay(200);

P2=0xff;//关闭显示

}

/*****显示温度子程序*****/

Disp_Temperature()//显示温度

{P2=0xf7;

P0=0x39;//显示C

Delay(300);

P2=0xfb;

P0=LEDData[n];//显示个位

Delay(300);

P2=0xfd;

P0=LEDData[m%10];//显示十位

DIAN=1;//显示小数点

Delay(300);

P2=0xfe;

P0=LEDData[m/10];//显示百位

Delay(300);

P2=0xff;//关闭显示

}

/*****显示报警温度子程序*****/

Disp_alarm(ucharbaojing)

{P2=0xf7;

P0=0x39;//显示C

Delay(200);

P2=0xfb;

P0=LEDData[baojing%10];//显示十位

Delay(200);

P2=0xfd;

P0=LEDData[baojing/10];//显示百位

Delay(200);

P2=0xfe;

if(set_st==1)P0=0x76;

elseif(set_st==2)P0=0x38;//上限H、下限L标示

Delay(200);

P2=0xff;//关闭显示

}

/*****报警子程序*****/

voidAlarm()

{unsignedinti;

{

for(i=0;i<200;i++)//喇叭发声的时间循环,

改变大小可以改变发声时间长短

{

Delay(80);//参数决定发声的频率,估算值

BEEP=!

BEEP;

}

BEEP=1;//喇叭停止工作,间歇的时间,可更改

Delay(20000);

}

}

/*****主函数*****/

voidmain(void)

{

uintz;

InitTimer();//初始化定时器

EA=1;//全局中断开关

TR0=1;

ET0=1;//开启定时器0

IT0=1;

IT1=1;

check_wendu();

check_wendu();

for(z=0;z<300;z++)

{

Disp_init();

}

while

(1)

{

if(SET==0)

{

Delay(2000);

do{}while(SET==0);

set_st++;x=0;shanshuo_st=1;

if(set_st>2)set_st=0;

}

if(set_st==0)

{

EX0=0;//关闭外部中断0

EX1=0;//关闭外部中断1

check_wendu();

Disp_Temperature();

if(m>=shangxian)

P1_0=1;

else

P1_0=0;

if(m

P1_1=1;

else

P1_1=0;

if((m>=shangxian)||(m

{

Alarm();//报警检测

}

}

elseif(set_st==1)

{

BEEP=1;//关闭蜂鸣器

EX0=1;//开启外部中断0

EX1=1;//开启外部中断1

if(x>=10){shanshuo_st=~shanshuo_st;x=0;}

if(shanshuo_st){Disp_alarm(shangxian);}

}

elseif(set_st==2)

{

BEEP=1;//关闭蜂鸣器

EX0=1;//开启外部中断0

EX1=1;//开启外部中断1

if(x>=10){shanshuo_st=~shanshuo_st;x=0;}

if(shanshuo_st){Disp_alarm(xiaxian);}

}

}

}

/*****END*****/

附录2:

整体原理图:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1