毕业设计mw级光伏并网电站发电量计算的方法.docx

上传人:b****8 文档编号:9815767 上传时间:2023-02-06 格式:DOCX 页数:16 大小:119.35KB
下载 相关 举报
毕业设计mw级光伏并网电站发电量计算的方法.docx_第1页
第1页 / 共16页
毕业设计mw级光伏并网电站发电量计算的方法.docx_第2页
第2页 / 共16页
毕业设计mw级光伏并网电站发电量计算的方法.docx_第3页
第3页 / 共16页
毕业设计mw级光伏并网电站发电量计算的方法.docx_第4页
第4页 / 共16页
毕业设计mw级光伏并网电站发电量计算的方法.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

毕业设计mw级光伏并网电站发电量计算的方法.docx

《毕业设计mw级光伏并网电站发电量计算的方法.docx》由会员分享,可在线阅读,更多相关《毕业设计mw级光伏并网电站发电量计算的方法.docx(16页珍藏版)》请在冰豆网上搜索。

毕业设计mw级光伏并网电站发电量计算的方法.docx

毕业设计mw级光伏并网电站发电量计算的方法

MW级光伏并网电站发电量计算的方法

邵吉

(尚德能源工程有限公司技术部,无锡新区214008)

摘要:

准确的发电量预测,不仅可以成为光伏电站系统设计的依据,更能给项目经济分析提供必要的数据支持。

本文对MW级光伏并网电站发电量的计算方法进行了研究,通过一个相对复杂的案例,阐述了发电量的计算方法。

关键词:

MW级光伏并网电站、辐射量、系统效率

1引言

2010年,国内的光伏发电成本如约降至1元/瓦,发改委第二轮光伏特许权招标的总装机容量也达到了创新高的280MW,可以预见,在成本下降和政策扶持的双重利好下,国内的光伏应用产业将会获得爆发式的增长,其中,MW级光伏并网电站一定会是新能源领域中的重要构成部分。

任何一个项目的开展,其先决条件是经济和技术的可行性分析,而在MW级光伏并网电站中,发电量则是决定建设方案是否可行的一个关键指标。

准确的发电量预测,不仅可以成为光伏电站系统设计的依据,更能给项目经济分析提供必要的数据支持。

本文对MW级光伏并网电站发电量的计算方法进行了研究,通过一个相对复杂的案例,阐述了发电量的计算方法。

2项目概述

项目场址位于宁夏中卫市东南约24km,宣和镇南侧9km处,场区坐标:

37º22′57″N~37º23′16″N,105º26′3″E~105º27′2″E。

项目总装机容量为10.5MWp,其中固定式安装(倾角35度)9.5MWp、极轴斜单轴跟踪0.25MWp、双轴跟踪0.75MWp。

项目分为5个光伏发电单元,每个发电单元2.1MWp,每2.1MWp建1个逆变器小室,固定方式的阵列采用500kW不带隔离变的逆变器,跟踪方式的阵列采用250KW带隔离变的逆变器,每个光伏发电单元设2台1250kVA、35/0.27-0.27kV(跟踪阵列变压器为35/0.4-0.4kV)升压变压器。

35KV母线采用单母线接线,5条进线,1条出线。

每个光伏并网发电单元的电池组件采用串并联的方式组成多个太阳能电池阵列,太阳能电池阵列输入光伏方阵初级防雷汇流箱后,经光伏并网逆变器和交流低压配电柜接入35KV升压变压器。

3太阳能资源

中卫市太阳辐射量大,日照时数多,日照百分率高,多年平均日照时数为2921.3h,全年日照月平均值达到243.4h,日照百分率高达66%。

根据中卫气象站1971~2000年日照时数和百分率资料,日照小时数最多的月份为5月和6月,达280小时,日照小时数最小的月份为2月,日照小时数在200小时左右。

中卫气象站各月日照时数、日照百分率、总云量及低云量统计成果见表1,晴天、阴天月平均日数统计成果见表2。

表1:

中卫市多年各月日照小时数(h)和日照百分率(%)统计表

项目

月份

日照时数

(h)

日照百分率

(%)

总云量

(成)

低云量

(成)

1

219.6

72

3.1

0

2

208.4

68

4.4

0.1

3

234.7

63

5.9

0.2

4

256.2

65

6.0

0.4

5

283.7

65

6.1

0.6

6

279.4

64

6.0

1.0

7

274.7

62

5.5

1.1

8

264.7

63

5.2

1.1

9

230.0

62

5.3

0.8

10

229.6

66

4.3

0.4

11

222.2

73

3.1

0.1

12

218.2

74

2.8

0.1

2921.3

66

4.8

0.5

表2:

中卫市多年各月晴天、阴天日数统计表

月份

项目

1

2

3

4

5

6

7

8

9

10

11

12

晴天d

14.2

8.4

4.3

4.3

4.1

3.9

5.8

7.5

6.9

10.6

14.5

15.0

99.5

阴天d

2.7

4.8

9.0

9.5

9.4

8.6

8.5

8.1

7.9

6.1

2.7

2.0

79.2

由于中卫气象站对太阳辐射量不进行观测,因此采用距离中卫市最近的银川市气象站多年逐月太阳总辐射量资料和中卫气象站多年逐月日照百分率资料,根据经验公式计算出中卫地区水平地面月平均太阳总辐射量,计算结果见表3:

表3:

中卫地区各月太阳总辐射量(MJ/m2)

月份

1

2

3

4

5

6

7

8

9

10

11

12

全年

中卫

312.6

356.6

492.4

604.1

706.3

706.9

694.1

636.5

509.3

426.8

332.3

288.8

6066.8

由表3可以看出,中卫地区夏季6月份的太阳总辐射量最大,5月份次之,均达到700MJ/m2以上,冬季12月份太阳总辐射量最小,仅为288.8MJ/m2。

根据我国太阳能资源区划标准,中卫地区年太阳总辐射量6066.8MJ/m2,可归为二类资源较丰富地区,适合建设大型光伏电站。

4模型计算条件

本模型计算的气象资料根据当地气象局及NASA查询所得资料;

支架建模、排布采用PVSYST软件实现,阵列发电量采用RETSCREEN能源模型进行计算分析。

10.5WMp电站包括9.5MW固定安装的多晶硅太阳能电池组件方阵以及0.75MW的跟踪方阵,固定方阵采用南北方向固定35度倾斜角排布以获得最大发电量,跟踪方阵包括0.25MW的斜单轴跟踪和0.75MW的双轴跟踪。

本模型分段计算各个部分的功率输出,太阳能电池板输出,逆变器输出,变压器输出,最后计算并网的输出到电网的电量。

系统效率主要考虑的因素有:

灰尘、雨水遮挡引起的效率降低、温度引起的效率降低、组件串联不匹配产生的效率降低、逆变器的功率损耗、直流交流部分线缆功率损耗、变压器功率损耗等等。

5系统总体效率分析

并网光伏发电系统的总效率由光伏阵列的效率,逆变器效率和交流并网效率三部分组成。

光伏阵列效率η1:

系指光伏阵列在1000W/m2的太阳辐射强度下,实际的直流输出功率与标称功率之比。

光伏阵列在能量转换和传输过程中的损失包括:

组件匹配损失、表面尘埃遮挡损失、不可利用太阳辐射损失、温度的影响、最大功率点跟踪(MPPT)精度以及直流线路损失等。

根据经验数据:

组件功率匹配损失小于6%;灰尘影响组件功率损失小于6%;直流线路损失小于3%;太阳能电池组件温度影响系数:

-0.38%/K;除去以上损失,光伏阵列效率η1=85%。

逆变器转换效率η2:

指的是逆变器输出的交流电功率与直流输出功率之比。

对于高效并网逆变器可取η2=98%。

交流并网效率η3:

即从逆变器输出至高压电网的传输效率,其中是升压变压器的效率。

对于本系统10MW容量,升压至35KV后再并入中高压公用电网,交流并网效率根据以往经验取η3=95%。

系统的总效率等于上述各部分效率的乘积:

η=η1xη2xη3=85%x95%x95%=79.13%

6系统发电量计算

6.1固定安装部分

本项目固定系统装机容量9.5MW,方阵采用0度方位角,南北固定35度倾斜角排列方式以获得最大发电量。

月平均太阳辐射强度对比

月份

水平面月平均辐射量(MJ/m2)

水平面月平均辐射量(kWh/m2)

光伏阵列表面月平均辐射量

(kWh/m2)

一月

312.60

86.83

148.92

二月

356.60

99.06

140.66

三月

492.40

136.78

161.47

四月

604.10

167.81

173.40

五月

706.30

196.19

183.27

六月

706.90

196.36

175.71

七月

694.10

192.81

175.96

八月

636.50

176.81

174.53

九月

509.30

141.47

157.52

十月

426.80

118.56

156.46

十一月

332.30

92.31

148.25

十二月

288.80

80.22

144.93

全年

6066.70

1685.19

1941.10

在当地纬度条件下,采用了35度固定倾角进行光伏方阵排布后,光伏组件表面所接受的辐射量得到了大幅提升,年辐射总量由1685.19kWh/m2提高到1941.10kWh/m2。

电站9.5MW固定阵列第一年各月均发电量计算表

月份

组件阵列能量输出(kWh)

逆变器输出(kWh)

并网点计量输出(kWh)

一月

1203543.13

1179472.27

1120498.65

二月

1136795.38

1114059.47

1058356.50

三月

1304984.60

1278884.91

1214940.66

四月

1401357.03

1373329.89

1304663.40

五月

1481134.70

1451512.01

1378936.41

六月

1420091.45

1391689.62

1322105.14

七月

1422113.78

1393671.50

1323987.93

八月

1410540.15

1382329.35

1313212.88

九月

1273077.93

1247616.37

1185235.55

十月

1264502.84

1239212.78

1177252.14

十一月

1198118.35

1174155.98

1115448.18

十二月

1171282.50

1147856.85

1090464.01

全年

15687541.83

15373791.00

14605101.45

电站9.5MW固定阵列第一年各月平均发电量计算柱状图

上图可以看到电站9.5MW固定阵列第一年各月份组件阵列、逆变器交流输出、并网计量点各处的发电量。

第一年月平均发电效率计算(每瓦发电量)

月份

月辐射总量(MJ/m2)

月辐射总量-水平面(kWh/m2)

月辐射总量-阵列面(kWh/m2)

每瓦发电量(kWh/Wp.Year)

一月

312.60

86.83

148.92

0.118

二月

356.60

99.06

140.66

0.111

三月

492.40

136.78

161.47

0.128

四月

604.10

167.81

173.40

0.137

五月

706.30

196.19

183.27

0.145

六月

706.90

196.36

175.71

0.139

七月

694.10

192.81

175.96

0.139

八月

636.50

176.81

174.53

0.138

九月

509.30

141.47

157.52

0.125

十月

426.80

118.56

156.46

0.124

十一月

332.30

92.31

148.25

0.117

十二月

288.80

80.22

144.93

0.115

全年

6066.70

1685.19

1941.10

1.536

由上表可以看出,电站9.5MW固定阵列第一年月平均每瓦年发电量为1.529度电/瓦。

由上图得知:

各月的发电效率为5月最高,2月最低,第一年的单位发电量为:

1.536度电/瓦。

6.2跟踪安装部分

本项目在固定系统的基础上安装了0.75MW的跟踪系统,包括0.25MW的斜单轴系统以及0.5MW的双轴跟踪系统。

斜单轴方阵采用0度方位角,南北35度倾斜角排列方式。

斜单轴系统发电量估算

月平均太阳辐射强度对比

月份

水平面月平均辐射量(MJ/m2)

水平面月平均辐射量(kWh/m2)

光伏阵列表面月平均辐射量

(kWh/m2)

一月

312.60

86.83

185.32

二月

356.60

99.06

172.51

三月

492.40

136.78

204.83

四月

604.10

167.81

219.55

五月

706.30

196.19

245.81

六月

706.90

196.36

234.07

七月

694.10

192.81

232.60

八月

636.50

176.81

232.54

九月

509.30

141.47

198.56

十月

426.80

118.56

201.16

十一月

332.30

92.31

183.27

十二月

288.80

80.22

180.37

全年

6066.70

1685.19

2490.59

在当地纬度条件下,采用了35度倾角的斜单轴跟踪方式进行光伏方阵排布后,光伏组件表面所接受的辐射量得到了大幅提升,年辐射总量由1685.19kWh/m2提高到2490.59kWh/m2。

电站0.25MW斜单轴跟踪方阵第一年各月均发电量计算表

月份

组件阵列能量输出(kWh)

逆变器输出(kWh)

并网点计量输出(kWh)

一月

39379.85

38592.25

36662.64

二月

36657.84

35924.69

34128.45

三月

43526.88

42656.34

40523.53

四月

46654.63

45721.54

43435.46

五月

52235.15

51190.45

48630.92

六月

49739.34

48744.55

46307.33

七月

49427.92

48439.37

46017.40

八月

49414.17

48425.89

46004.59

九月

42193.88

41350.00

39282.50

十月

42747.34

41892.40

39797.78

十一月

38944.60

38165.70

36257.42

十二月

38329.42

37562.83

35684.69

全年

529251.03

518666.01

492732.71

电站0.25MW斜单轴阵列第一年各月平均发电量计算柱状图

上图可以看到电站0.25MW斜单轴跟踪阵列第一年各月份组件阵列、逆变器交流输出、并网计量点各处的发电量。

双单轴系统发电量估算

月平均太阳辐射强度对比

月份

水平面月平均辐射量(MJ/m2)

水平面月平均辐射量(kWh/m2)

光伏阵列表面月平均辐射量

(kWh/m2)

一月

312.60

86.83

203.37

二月

356.60

99.06

178.00

三月

492.40

136.78

204.72

四月

604.10

167.81

222.02

五月

706.30

196.19

256.70

六月

706.90

196.36

249.66

七月

694.10

192.81

245.74

八月

636.50

176.81

237.98

九月

509.30

141.47

198.62

十月

426.80

118.56

203.21

十一月

332.30

92.31

193.34

十二月

288.80

80.22

199.94

全年

6066.70

1685.19

2593.31

在当地纬度条件下,采用了双轴跟踪方式进行光伏方阵排布后,光伏组件表面所接受的辐射量得到了大幅提升,年辐射总量由1685.19kWh/m2提高到2593.31kWh/m2。

电站0.75MW双轴跟踪方阵第一年各月均发电量计算表

月份

组件阵列能量输出(kWh)

逆变器输出(kWh)

并网点计量输出(kWh)

一月

129645.75

127052.84

120700.19

二月

113475.58

111206.07

105645.77

三月

130507.75

127897.59

121502.71

四月

141539.67

138708.88

131773.44

五月

163648.51

160375.54

152356.77

六月

159160.65

155977.43

148178.56

七月

156659.38

153526.19

145849.88

八月

151712.60

148678.34

141244.43

九月

126620.57

124088.16

117883.75

十月

129547.87

126956.91

120609.07

十一月

123257.01

120791.87

114752.27

十二月

127462.56

124913.31

118667.65

全年

1653237.90

1620173.14

1539164.49

电站0.75MW双轴阵列第一年各月平均发电量计算柱状图

6.3系统首年发电总量及单位发电量

系统首年发电总量(千瓦时)

=9.5MWp固定+0.25MWp斜单轴跟踪+0.75MWp双轴跟踪

=14605101.45+492732.71+1539164.49

=16636998.65

系统首年单位发电量(千瓦时/瓦)

=系统首年发电总量(千瓦时)/系统安装容量

=16636998.65/10500000

=1.584

6.4整个系统运行25年发电总量预测

按照光伏组件25年衰减不超过20%,可以预测电站25年运营周期总发电量。

25年发电量估算表

年数

年平均发电量

累计发电量

1

16636998.65

16636998.65

2

16603724.65

33240723.30

3

16570517.20

49811240.51

4

16537376.17

66348616.68

5

16504301.42

82852918.09

6

16471292.81

99324210.91

7

16438350.23

115762561.13

8

16405473.53

132168034.66

9

16372662.58

148540697.24

10

16339917.26

164880614.50

11

16307237.42

181187851.92

12

16274622.95

197462474.86

13

16242073.70

213704548.57

14

16209589.55

229914138.12

15

16177170.37

246091308.49

16

16144816.03

262236124.52

17

16112526.40

278348650.93

18

16080301.35

294428952.27

19

16048140.75

310477093.02

20

16016044.46

326493137.48

21

15984012.38

342477149.86

22

15952044.35

358429194.21

23

15920140.26

374349334.47

24

15888299.98

390237634.45

25

15856523.38

406094157.83

由上表可以得知整个光伏系统在25年运营周期中可实现总发电量40,609多万度电,年平均发电量可达到1624.37万度电。

7发电量计算结果及修正

中卫宣和10MW光伏并网电站正式并网发电后第一年和第二年的预计发电量估算如下:

第一年和第二年的预计发电量

年份

年预计发电量千瓦时

1

16636998.65

2

16603724.65

本文通过PVSYST进行建模结构模型,通过RETSCREEEN模型进行太阳辐照强度的计算,并根据相关气象资料信息进行理论电量计算,该计算结果显示,在中卫宣和项目所在地10MWp光伏电站,第1年预计发电量为1663.69万度电,单位功率组件年发电效率为1.584kWh/Wp.Year。

25年平均发电量预计为1624.37万度电,而光伏电站实际发电量还受到以下因素影响:

Ø灰尘影响

本项目建设所在地位于中卫宣和近郊戈壁,属于比较干旱的地区,风沙较大,年降水量较少,灰尘对组件发电的影响比较严重,再加上项目现场基础开挖、回填等土方施工,对植被产生破坏,可能需要两三年时间来恢复,这也会进一步加剧现场扬沙现象,影响发电量,因此电站所在地区,实际灰尘污染指数将比理论参考值增大。

Ø人为因素影响

1)主要指的是每年当地电网定期检修。

2)光伏电站定期自检,以及有组织的对组件表面进行的定期清洁工作。

3)调度对发电量的限制。

Ø气候不可预见因素

光伏电站运行前三年的气候条件不可能与当地气候的平均理论值完全吻合,有可能出现大幅度低于平均理论值的实际情况。

在气候条件比较正常的下,鉴于上述因素的影响,计算所得的电站理论年发电量可能会有+10%的变化。

8结论

本文通过一个具体案例,分析了各种支架形式下的发电量计算,并综合考虑了发电效率和衰减因素的折算,以上内容基本涵盖了目前主流MW级光伏并网电站的几种建设模式,可作为今后该类项目技术经济分析的参考。

 

参考文献

[1]沈辉,曾祖勤.太阳能光伏发电技术.化学工业出版社

[2]赵春江,杨金焕,陈中华,等.太阳能光伏发电应用的现状及发展.节能技术

[3]马丁格林著,李秀文,谢鸿礼,赵海滨等译,太阳电池工作原理、工艺和系统的应用,北京:

电子工业出版社。

1987

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 文学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1