初中数学几何知识点总结.docx
《初中数学几何知识点总结.docx》由会员分享,可在线阅读,更多相关《初中数学几何知识点总结.docx(38页珍藏版)》请在冰豆网上搜索。
初中数学几何知识点总结
第一章图形的初步认识
考点一、直线、射线和线段(3分)
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:
有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:
有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:
线和线相交的地方是点,它是几何图形中最基本的图形。
线:
面和面相交的地方是线,分为直线和曲线。
面:
包围着体的是面,分为平面和曲面。
体:
几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、直线的概念
一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
4、射线的概念
直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
5、线段的概念
直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
6、点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:
(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
7、直线的性质
(1)直线公理:
经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:
过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
8、线段的性质
(1)线段公理:
所有连接两点的线中,线段最短。
也可简单说成:
两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
9、线段垂直平分线的性质定理及逆定理
垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:
线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:
和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
考点二、角(3分)
1、角的相关概念
有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。
当角的两边在一条直线上时,组成的角叫做平角。
平角的一半叫做直角;小于直角的角叫做锐角;大于直角且小于平角的角叫做钝角。
如果两个角的和是一个直角,那么这两个角叫做互为余角,其中一个角叫做另一个角的余角。
如果两个角的和是一个平角,那么这两个角叫做互为补角,其中一个角叫做另一个角的补角。
2、角的表示
角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有一下四种表示方法:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:
用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
3、角的度量
角的度量有如下规定:
把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’=60”
4、角的性质
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较
(3)角可以参与运算。
5、角的平分线及其性质
一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
角的平分线有下面的性质定理:
(1)角平分线上的点到这个角的两边的距离相等。
(2)到一个角的两边距离相等的点在这个角的平分线上。
考点三、相交线(3分)
1、相交线中的角
两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。
我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。
临补角互补,对顶角相等。
直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。
其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。
2、垂线
两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
垂线的性质:
性质1:
过一点有且只有一条直线与已知直线垂直。
性质2:
直线外一点与直线上各点连接的所有线段中,垂线段最短。
简称:
垂线段最短。
考点四、平行线(3~8分)
1、平行线的概念
在同一个平面内,不相交的两条直线叫做平行线。
平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。
同一平面内,两条直线的位置关系只有两种:
相交或平行。
注意:
(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论
平行公理:
经过直线外一点,有且只有一条直线与这条直线平行。
推论:
如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定
平行线的判定公理:
两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:
同位角相等,两直线平行。
平行线的两条判定定理:
(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:
内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:
同旁内角互补,两直线平行。
补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
4、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
考点五、命题、定理、证明(3~8分)
1、命题的概念
判断一件事情的语句,叫做命题。
理解:
命题的定义包括两层含义:
(1)命题必须是个完整的句子;
(2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分)
真命题(正确的命题)
命题
假命题(错误的命题)
所谓正确的命题就是:
如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:
如果题设成立,不能证明结论总是成立的命题。
3、公理
人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
4、定理
用推理的方法判断为正确的命题叫做定理。
5、证明
判断一个命题的正确性的推理过程叫做证明。
6、证明的一般步骤
(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
考点六、投影与视图(3分)
1、投影
投影的定义:
用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
平行投影:
由平行光线(如太阳光线)形成的投影称为平行投影。
中心投影:
由同一点发出的光线所形成的投影称为中心投影。
2、视图
当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
物体的三视图特指主视图、俯视图、左视图。
主视图:
在正面内得到的由前向后观察物体的视图,叫做主视图。
俯视图:
在水平面内得到的由上向下观察物体的视图,叫做俯视图。
左视图:
在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。
第二章三角形
考点一、三角形(3~8分)
1、三角形的概念
由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段
(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性
三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示
三角形有下面三个特性:
(1)三角形有三条线段
(2)三条线段不在同一直线上三角形是封闭图形
(3)首尾顺次相接
三角形用符号“
”表示,顶点是A、B、C的三角形记作“
ABC”,读作“三角形ABC”。
5、三角形的分类
三角形按边的关系分类如下:
不等边三角形
三角形底和腰不相等的等腰三角形
等腰三角形
等边三角形
三角形按角的关系分类如下:
直角三角形(有一个角为直角的三角形)
三角形锐角三角形(三个角都是锐角的三角形)
斜三角形
钝角三角形(有一个角为钝角的三角形)
把边和角联系在一起,我们又有一种特殊的三角形:
等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论
(1)三角形三边关系定理:
三角形的两边之和大于第三边。
推论:
三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:
①判断三条已知线段能否组成三角形
②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论
三角形的内角和定理:
三角形三个内角和等于180°。
推论:
①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:
在同一个三角形中:
等角对等边;等边对等角;大角对大边;大边对大角。
8、三角形的面积
三角形的面积=
×底×高
考点二、全等三角形(3~8分)
1、全等三角形的概念
能够完全重合的两个图形叫做全等形。
能够完全重合的两个三角形叫做全等三角形。
两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。
2、全等三角形的表示和性质
全等用符号“≌”表示,读作“全等于”。
如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。
注:
记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、三角形全等的判定
三角形全等的判定定理:
(1)边角边定理:
有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)
(2)角边角定理:
有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)
(3)边边边定理:
有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):
有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)
4、全等变换
只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:
(1)平移变换:
把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:
将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:
将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
考点三、等腰三角形(8~10分)
1、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:
等腰三角形的两个底角相等(简称:
等边对等角)
推论1:
等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:
等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:
①等腰直角三角形的两个底角相等且等于45°
②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:
设腰长为a,底边长为b,则
④等腰三角形的三角关系:
设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
2、等腰三角形的判定
等腰三角形的判定定理及推论:
定理:
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:
等角对等边)。
这个判定定理常用于证明同一个三角形中的边相等。
推论1:
三个角都相等的三角形是等边三角形
推论2:
有一个角是60°的等腰三角形是等边三角形。
推论3:
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
等腰三角形的性质与判定
等腰三角形性质
等腰三角形判定
中线
1、等腰三角形底边上的中线垂直底边,平分顶角;
2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形;
2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形
角平分线
1、等腰三角形顶角平分线垂直平分底边;
2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;
2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线
1、等腰三角形底边上的高平分顶角、平分底边;
2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;
2、有两条高相等的三角形是等腰三角形。
角
等边对等角
等角对等边
边
底的一半<腰长<周长的一半
两边相等的三角形是等腰三角形
4、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:
三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:
可以证明两条直线平行。
数量关系:
可以证明线段的倍分关系。
常用结论:
任一个三角形都有三条中位线,由此有:
结论1:
三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:
三条中位线将原三角形分割成四个全等的三角形。
结论3:
三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:
三角形一条中线和与它相交的中位线互相平分。
结论5:
三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
第三章四边形
考点一、四边形的相关概念(3分)
1、四边形
在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。
2、凸四边形
把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。
3、对角线
在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。
4、四边形的不稳定性
三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。
但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。
5、四边形的内角和定理及外角和定理
四边形的内角和定理:
四边形的内角和等于360°。
四边形的外角和定理:
四边形的外角和等于360°。
推论:
多边形的内角和定理:
n边形的内角和等于
180°;
多边形的外角和定理:
任意多边形的外角和等于360°。
6、多边形的对角线条数的计算公式
设多边形的边数为n,则多边形的对角线条数为
。
考点二、平行四边形(3~10分)
1、平行四边形的概念
两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。
2、平行四边形的性质
(1)平行四边形的邻角互补,对角相等。
(2)平行四边形的对边平行且相等。
推论:
夹在两条平行线间的平行线段相等。
(3)平行四边形的对角线互相平分。
(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。
3、平行四边形的判定
(1)定义:
两组对边分别平行的四边形是平行四边形
(2)定理1:
两组对角分别相等的四边形是平行四边形
(3)定理2:
两组对边分别相等的四边形是平行四边形
(4)定理3:
对角线互相平分的四边形是平行四边形
(5)定理4:
一组对边平行且相等的四边形是平行四边形
4、两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积
S平行四边形=底边长×高=ah
考点三、矩形(3~10分)
1、矩形的概念
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质
(1)具有平行四边形的一切性质
(2)矩形的四个角都是直角
(3)矩形的对角线相等
(4)矩形是轴对称图形
3、矩形的判定
(1)定义:
有一个角是直角的平行四边形是矩形
(2)定理1:
有三个角是直角的四边形是矩形
(3)定理2:
对角线相等的平行四边形是矩形
4、矩形的面积
S矩形=长×宽=ab
考点四、菱形(3~10分)
1、菱形的概念
有一组邻边相等的平行四边形叫做菱形
2、菱形的性质
(1)具有平行四边形的一切性质
(2)菱形的四条边相等
(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(4)菱形是轴对称图形
3、菱形的判定
(1)定义:
有一组邻边相等的平行四边形是菱形
(2)定理1:
四边都相等的四边形是菱形
(3)定理2:
对角线互相垂直的平行四边形是菱形
4、菱形的面积
S菱形=底边长×高=两条对角线乘积的一半
考点五、正方形(3~10分)
1、正方形的概念
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)具有平行四边形、矩形、菱形的一切性质
(2)正方形的四个角都是直角,四条边都相等
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角
(4)正方形是轴对称图形,有4条对称轴
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定
(1)判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:
先证明它是平行四边形;
再证明它是菱形(或矩形);
最后证明它是矩形(或菱形)
4、正方形的面积
设正方形边长为a,对角线长为b
S正方形=
考点六、梯形(3~10分)
1、梯形的相关概念
一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
两腰相等的梯形叫做等腰梯形。
一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下:
一般梯形
梯形直角梯形
特殊梯形
等腰梯形
2、梯形的判定
(1)定义:
一组对边平行而另一组对边不平行的四边形是梯形。
(2)一组对边平行且不相等的四边形是梯形。
3、等腰梯形的性质
(1)等腰梯形的两腰相等,两底平行。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
4、等腰梯形的判定
(1)定义:
两腰相等的梯形是等腰梯形
(2)定理:
在同一底上的两个角相等的梯形是等腰梯形
(3)对角线相等的梯形是等腰梯形。
5、梯形的面积
(1)如图,
(2)梯形中有关图形的面积:
①
;
②
;
③
6、梯形中位线定理
梯形中位线平行于两底,并且等于两底和的一半。
第四章解直角三角形
考点一、直角三角形的性质(3~5分)
1、直角三角形的两个锐角互余
可表示如下:
∠C=90°
∠A+∠B=90°
2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°
可表示如下:
BC=
AB
∠C=90°
3、直角三角形斜边上的中线等于斜边的一半
∠ACB=90°
可表示如下:
CD=
AB=BD=AD
D为AB的中点
4、勾股定理
直角三角形两直角边a,b的平方和等于斜边c的平方,即
5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90°
CD⊥AB
6、常用关系式
由三角形面积公式可得:
AB
CD=AC
BC
考点二、直角三角形的判定(3~5分)
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理
如果三角形的三边长a,b,c有关系
,那么这个三角形是直角三角形。
考点三、锐角三角函数的概念(3~8分)
1、如图,在△ABC中,∠C=90°
①锐角A的对边与斜边的比叫做∠A的正弦,记为sinA,即
②锐角A的邻边与斜边的比叫做∠A的余弦,记为cosA,即
③锐角A的对边与邻边的比叫做∠A的正切,记为tanA,即
2、锐角三角函数的概念
锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数
3、一些特殊角的三角函数值
三角函数
0°
30°
45°
60°
90°
sinα
0
1
cosα
1
0
tanα
0
1
不存在
4、各锐角三角函数之间的关系
(1)互余关系
sinA=cos(90°—A),cosA=sin(90°—A)
(2)平方关系
(3)倒数关系
tanA
tan(90°—A)=1
(4)弦切关系
tanA=
5、锐角三角函数的增减性
当角度在0°~90°之间变化时,
(1)正弦值随着角度的增大(或减小)而增大(或减小)
(2)余弦值随着角度的增大(或减小)而减小