交通规划课程设计.docx

上传人:b****7 文档编号:9690155 上传时间:2023-02-05 格式:DOCX 页数:39 大小:105.32KB
下载 相关 举报
交通规划课程设计.docx_第1页
第1页 / 共39页
交通规划课程设计.docx_第2页
第2页 / 共39页
交通规划课程设计.docx_第3页
第3页 / 共39页
交通规划课程设计.docx_第4页
第4页 / 共39页
交通规划课程设计.docx_第5页
第5页 / 共39页
点击查看更多>>
下载资源
资源描述

交通规划课程设计.docx

《交通规划课程设计.docx》由会员分享,可在线阅读,更多相关《交通规划课程设计.docx(39页珍藏版)》请在冰豆网上搜索。

交通规划课程设计.docx

交通规划课程设计

一、交通生成预测

1.取池州将来平均出行次数2.5次,规划人口资料见下图所示,

大区名/编号

主城区/1

开发区/2

教育园区/3

站前区/4

杏花村/5

梅里/6

江南集中区/7

机场区/8

合计

规划人口

239685

102040

14338

50383

18504

15026

220000

180000

839976

2.计算将来的发生量与吸引量

1

2

3

4

5

6

7

8

未来发生量

1

599212.5

2

255100

3

35845

4

125957.5

5

46260

6

37565

7

550000

8

450000

未来吸引量

599212.5

255100

35845

125957.5

46260

37565

550000

450000

2099940

二、交通分布预测

(一)、现状OD表

D

O

1

2

3

4

5

6

7

8

合计

未来发生量

1

281962

31867

6672

8125

10729

7227

46670

33174

426426

599212.5

2

31806

5103

254

1028

605

815

3662

2395

45668

255100

3

8169

535

3222

518

1092

294

734

495

15059

35845

4

8941

750

1919

1715

1499

1607

1221

859

18511

125957.5

5

10239

803

703

766

11917

1836

1366

956

28586

46260

6

15546

943

336

885

411

19515

1915

1146

40697

37565

7

40078

3247

1122

3132

1337

5399

31488

10602

96405

550000

8

29685

2422

834

2343

992

3998

9351

19690

69315

450000

合计

426426

45670

15062

18512

28582

40691

96407

69317

740667

未来吸引量

599212.5

255100

35845

125957.5

46260

37565

550000

450000

2099940

(二)、用平均增长率法计算

增长系数

1.计算增长系数

1

2

3

4

5

6

7

8

增长系数

1

1.41

2

5.59

3

2.38

4

6.80

5

1.62

6

0.92

7

5.71

8

6.49

增长系数

1.41

5.59

2.38

6.80

1.62

0.92

5.70

6.49

2.第一次迭代,结果如下

1

2

3

4

5

6

7

8

合计

1

397566.4

111466.4

12642.9

33369.8

16246.4

8430.9

166028.1

131069.0

876819.9

2

177795.5

28514.9

1012.2

6370.6

2180.6

2654.1

20681.1

14468.1

253677.1

3

19442.2

2130.8

7668.1

2378.7

2183.2

485.6

2967.2

2195.8

39451.6

4

60798.8

4644.6

8808.0

11665.5

6309.7

6205.6

7634.3

5708.9

111775.4

5

16587.2

2893.1

1405.9

3226.4

19296.6

2334.6

5003.0

3877.5

54624.3

6

14302.3

3067.4

554.4

3417.9

521.7

17984.8

6343.4

4247.0

50438.9

7

228845.4

18338.6

4538.4

19597.1

4899.1

17906.3

179717.4

64682.3

538524.6

8

192655.7

14623.7

3698.7

15574.0

4021.8

14818.9

57017.6

127806.9

430217.3

合计

1107993.5

185679.5

40328.6

95600

55659.1

70820.8

445392.1

354055.5

2355529.1

3.继续迭代,计算增长系数

1

2

3

4

5

6

7

8

增长系数

1

0.68

2

1.01

3

0.91

4

1.13

5

0.85

6

0.74

7

1.02

8

1.05

增长系数

0.54

1.37

0.89

1.32

0.83

0.53

1.23

1.27

4.第二次迭代结果如下

1

2

3

4

5

6

7

8

合计

1

242515.5

114468.9

9917.2

33328.9

12275.2

5102.5

158960.9

127857.0

704426.0

2

137791.5

33987.9

961.0

7413.9

2007.4

2044.2

23213.2

16500.8

223919.9

3

14095.6

2433.2

6896.8

2649.3

1900.6

349.7

3182.1

2394.5

33901.9

4

50767.0

5814.7

8890.9

14275.9

6187.1

5152.0

9027.1

6853.5

106968.2

5

11528.1

3216.9

1222.3

3496.7

16220.1

1611.4

5215.3

4112.1

46622.8

6

9153.5

3242.0

451.5

3516.2

409.8

11424.2

6263.7

4270.3

38731.3

7

178499.4

21950.1

4331.5

22904.6

4534.4

13881.2

202619.4

74093.2

522813.8

8

153161.3

17723.0

3585.6

18436.1

3782.8

11710.1

65138.8

148319.1

421856.7

合计

797511.9

202836.9

36256.8

106021.7

47317.4

51275.2

473620.4

384400.4

2099240.6

5.计算增长率

1

2

3

4

5

6

7

8

增长率

1

0.85

2

1.14

3

1.06

4

1.18

5

0.99

6

0.97

7

1.05

8

1.07

增长率

0.75

1.26

0.99

1.19

0.98

0.73

1.16

1.17

6.收敛判定不满足,继续迭代,第三迭代结果如下

1

2

3

4

5

6

7

8

合计

1

194253.9

120667.4

9120.3

33973.4

11221.3

4039.3

159907.2

129218.2

662401.0

2

130254.2

40733.0

1022.4

8627.2

2124.7

1913.2

26701.1

19057.6

230433.5

3

12747.1

2816.4

7055.3

2974.3

1933.8

313.0

3529.9

2667.4

34037.4

4

48961.6

7080.0

9629.6

16885.3

6667.1

4920.5

10556.2

8046.6

112746.9

5

10050.0

3618.9

1210.6

3811.8

15975.7

1389.7

5615.5

4446.9

46119.2

6

7877.7

3610.9

442.1

3793.9

399.1

9724.8

6674.4

4570.4

37093.4

7

160948.7

25348.7

4419.5

25653.5

4601.7

12386.3

224225.5

82341.7

539925.5

8

139228.6

20597.4

3684.8

20784.4

3866.7

10535.1

72564.0

165922.1

437183.2

合计

704321.9

224472.7

36584.7

116503.8

46790.2

45221.9

509773.9

416271.1

2099940.0

(三)、Fratar法计算

1.计算公式

增长率

其中

所以

2.用MATLAB编程计算,程序过程如下:

clc

U=[599212.525510035845125957.54626037565550000450000];

V=U;

O=[426426,45668,15059,18511,28586,40697,96405,69315];

D=[426426,45670,15062,18512,28582,40691,96407,69317];

Q0=[281962,31867,6672,8125,10729,7227,46670,33174;

31806,5103,254,1028,605,815,3662,2395;

8169,535,3222,518,1092,294,734,495;

8941,750,1919,1715,1499,1607,1221,859;

10239,803,703,766,11917,1836,1366,956;

15546,943,336,885,411,19515,1915,1146;

40078,3247,1122,3132,1337,5399,31488,10602;

29685,2422,834,2343,992,3998,9351,19690;];

Q1=zeros(8,8);

Fo=zeros(8,2);

Fd=zeros(8,2);

fork=1:

1:

2

fori=1:

8

Fo(i,1)=U(i)/O(i);

end

fori=1:

8

Fd(i,1)=V(i)/D(i);

end

Li=zeros(8,1);

Lj=zeros(8,1);

fori=1:

8

Sum=0;

forj=1:

8

Sum=Sum+Q0(i,j)*Fd(j);

end

Li(i)=O(i)/Sum;

end

fori=1:

8

Sum=0;

forj=1:

8

Sum=Sum+Q0(j,i)*Fo(j);

end

Lj(i)=D(i)/Sum;

end

fori=1:

8

forj=1:

8

Q1(i,j)=Q0(i,j)*Fo(i)*Fd(j)*(Li(i)+Lj(j))/2;

end

end

O1=zeros(1,8);

D1=zeros(1,8);

fori=1:

8

forj=1:

8

O1(1,i)=Q1(i,j)+O1(1,i);

D1(1,i)=Q1(j,i)+D1(1,i);

end

Fo(i,2)=U(i)/O1(1,i);

Fd(i,2)=V(i)/D1(1,i);

end

Q0=Q1;

O=O1;

D=D1;

end

3.最终计算结果如下表:

O

1

2

3

4

5

6

7

8

合计

1

230618.7

104283.0

7767.8

24489.0

10686.2

3809.5

124129.5

96473.4

602257.2

2

104724.4

67211.9

1191.8

12507.1

2422.7

1729.1

39320.1

28130.4

257237.6

3

12932.1

3386.1

7297.0

3055.5

2095.1

299.8

3820.9

2822.6

35709.1

4

36232.1

12159.7

11074.3

25629.9

7395.8

4197.2

16100.7

12386.5

125176.2

5

11607.9

3637.8

1143.6

3258.3

16320.7

1340.2

5128.8

3936.4

46373.7

6

12497.3

3026.2

390.1

2707.8

396.6

10094.5

5172.1

3402.3

37686.9

7

105745.3

34332.6

4171.0

29745.2

4340.1

9192.4

263788.8

96720.4

548035.8

8

88323.4

28882.1

3494.0

25055.3

3633.8

7676.9

88202.3

202195.9

447463.6

合计

602681.2

256919.5

36529.5

126448.1

47291.0

38339.7

545663.1

446068.0

2099940.0

(4)、无约束重力模型计算

1.计算公式

无约束重力模型

其中:

2.用MATLAB编程计算,程序过程如下:

clc;

NowT=[0,0.4,0.35,0.23,0.18,0.21,1,1.12;

0.4,0,0.24,0.52,0.64,0.72,0.6,0.72;

0.35,0.24,0,0.26,0.52,0.6,0.68,0.8;

0.23,0.52,0.26,0,0.26,0.4,0.92,0.92;

0.18,0.64,0.52,0.26,0,0.14,1.2,1.24;

0.21,0.72,0.6,0.4,0.14,0,1.2,1.28;

1,0.6,0.68,0.92,1.2,1.2,0,0.24;

1.12,0.72,0.8,0.92,1.24,1.28,0.24,0];

HopeT=[0,0.25,0.29,0.19,0.15,0.17,0.71,0.7;

0.25,0,0.2,0.43,0.53,0.6,0.43,0.51;

0.29,0.2,0,0.22,0.33,0.5,0.57,0.5;

0.19,0.43,0.22,0,0.16,0.33,0.77,0.51;

0.15,0.53,0.33,0.16,0,0.12,1,1.03;

0.17,0.6,0.5,0.33,0.12,0,1,1.07;

0.71,0.43,0.57,0.77,1,1,0,0.2;

0.7,0.51,0.5,0.51,1.03,1.07,0.2,0];

OD0=[281962,31867,6672,8125,10729,7227,46670,33174,426426;

31806,5103,254,1028,605,815,3662,2395,45668;

8169,535,3222,518,1092,294,734,495,15059;

8941,750,1919,1715,1499,1607,1221,859,18511;

10239,803,703,766,11917,1836,1366,956,28586;

15546,943,336,885,411,19515,1915,1146,40697;

40078,3247,1122,3132,1337,5399,31488,10602,96405;

29685,2422,834,2343,992,3998,9351,19690,69315;

426426,45670,15062,18512,28582,40691,96407,69317,740667;];

fori=1:

1:

8

forj=1:

1:

8

if(NowT(i,j)==0)

NowT(i,j)=0.00001;

end

if(HopeT(i,j)==0)

HopeT(i,j)=0.00001;

end

end

end

OD1=zeros(8,8);

OD2=zeros(8,8);

z=zeros(1,64);

x=zeros(1,64);

y=zeros(1,64);

fori=1:

1:

8

forj=1:

1:

8

OD1(i,j)=OD0(i,j);

OD1(i,j)=log(OD1(i,j));

end

end

fori=1:

1:

8

forj=1:

1:

8

OD2(i,j)=OD0(i,9)*OD0(9,j);

OD2(i,j)=log(OD2(i,j));

end

end

fori=1:

1:

8

forj=1:

1:

8

z(1,8*(i-1)+j)=OD1(i,j);

x(1,8*(i-1)+j)=OD2(i,j);

y(1,8*(i-1)+j)=NowT(i,j);

end

end

Z=z';

X=[x;y]';

B=regress(Z,[ones(length(x),1)X]);

c=B

(1);

a=-B

(2);

b=-B(3);

FinalOD=[599212.5,255100,35845,125957.5,46260,37565,550000,450000,2099940];

OD3=zeros(9,9);

OD4=zeros(8,8);

fori=1:

1:

8

forj=1:

1:

8

OD4(i,j)=FinalOD(i)*FinalOD(j);

end

end

fori=1:

1:

8

forj=1:

1:

8

OD3(i,j)=exp(c)*(OD4(i,j)^a)/(exp(HopeT(i,j)*b));

end

end

fori=1:

1:

8

OD3(i,9)=0;

OD3(9,i)=0;

forj=1:

1:

8

OD3(i,9)=OD3(i,9)+OD3(i,j);

OD3(9,i)=OD3(9,i)+OD3(j,i);

end

end

FO=zeros(1,8);

FD=zeros(1,8);

OD5=zeros(9,9);

fork=1:

1:

22

fori=1:

1:

8

OD5(9,i)=FinalOD(i);

OD5(i,9)=FinalOD(i);

end

fori=1:

1:

8

FO(i)=OD5(i,9)/OD3(i,9);

FD(i)=OD5(9,i)/OD3(9,i);

end

fori=1:

1:

8

forj=1:

1:

8

OD5(i,j)=OD3(i,j)*(FO(i)+FD(j))/2;

end

end

fori=1:

1:

8

OD5(i,9)=0;

OD5(9,i)=0;

forj=1:

1:

8

OD5(i,9)=OD5(i,9)+OD5(i,j);

OD5(9,i)=OD5(9,i)+OD5(j,i);

end

end

OD3=OD5;

end

 

3.最终计算结果如下表:

1

2

3

4

5

6

7

8

合计

1

216721.6

86012.9

15620.9

56095.2

27077.2

22290.1

94516.0

80817.3

599151.3

2

86012.9

32860.0

1834.7

7730.1

2128.3

1548.2

73391.5

49619.4

255125.3

3

15620.9

1834.7

0.1

108.9

0.6

0.2

10778.3

7510.8

35854.5

4

56095.2

7730.1

108.9

2229.0

241.1

138.4

30962.2

28479.2

125984.1

5

27077.2

2128.3

0.6

241.1

4.1

1.5

10299.6

6521.6

46274.0

6

22290.1

1548.2

0.2

138.4

1.5

0.7

8495.9

5101.9

37576.9

7

94516.0

73391.5

10778.3

30962.2

10

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 政史地

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1