交通规划课程设计.docx
《交通规划课程设计.docx》由会员分享,可在线阅读,更多相关《交通规划课程设计.docx(39页珍藏版)》请在冰豆网上搜索。
交通规划课程设计
一、交通生成预测
1.取池州将来平均出行次数2.5次,规划人口资料见下图所示,
大区名/编号
主城区/1
开发区/2
教育园区/3
站前区/4
杏花村/5
梅里/6
江南集中区/7
机场区/8
合计
规划人口
239685
102040
14338
50383
18504
15026
220000
180000
839976
2.计算将来的发生量与吸引量
1
2
3
4
5
6
7
8
未来发生量
1
599212.5
2
255100
3
35845
4
125957.5
5
46260
6
37565
7
550000
8
450000
未来吸引量
599212.5
255100
35845
125957.5
46260
37565
550000
450000
2099940
二、交通分布预测
(一)、现状OD表
D
O
1
2
3
4
5
6
7
8
合计
未来发生量
1
281962
31867
6672
8125
10729
7227
46670
33174
426426
599212.5
2
31806
5103
254
1028
605
815
3662
2395
45668
255100
3
8169
535
3222
518
1092
294
734
495
15059
35845
4
8941
750
1919
1715
1499
1607
1221
859
18511
125957.5
5
10239
803
703
766
11917
1836
1366
956
28586
46260
6
15546
943
336
885
411
19515
1915
1146
40697
37565
7
40078
3247
1122
3132
1337
5399
31488
10602
96405
550000
8
29685
2422
834
2343
992
3998
9351
19690
69315
450000
合计
426426
45670
15062
18512
28582
40691
96407
69317
740667
未来吸引量
599212.5
255100
35845
125957.5
46260
37565
550000
450000
2099940
(二)、用平均增长率法计算
增长系数
1.计算增长系数
1
2
3
4
5
6
7
8
增长系数
1
1.41
2
5.59
3
2.38
4
6.80
5
1.62
6
0.92
7
5.71
8
6.49
增长系数
1.41
5.59
2.38
6.80
1.62
0.92
5.70
6.49
2.第一次迭代,结果如下
1
2
3
4
5
6
7
8
合计
1
397566.4
111466.4
12642.9
33369.8
16246.4
8430.9
166028.1
131069.0
876819.9
2
177795.5
28514.9
1012.2
6370.6
2180.6
2654.1
20681.1
14468.1
253677.1
3
19442.2
2130.8
7668.1
2378.7
2183.2
485.6
2967.2
2195.8
39451.6
4
60798.8
4644.6
8808.0
11665.5
6309.7
6205.6
7634.3
5708.9
111775.4
5
16587.2
2893.1
1405.9
3226.4
19296.6
2334.6
5003.0
3877.5
54624.3
6
14302.3
3067.4
554.4
3417.9
521.7
17984.8
6343.4
4247.0
50438.9
7
228845.4
18338.6
4538.4
19597.1
4899.1
17906.3
179717.4
64682.3
538524.6
8
192655.7
14623.7
3698.7
15574.0
4021.8
14818.9
57017.6
127806.9
430217.3
合计
1107993.5
185679.5
40328.6
95600
55659.1
70820.8
445392.1
354055.5
2355529.1
3.继续迭代,计算增长系数
1
2
3
4
5
6
7
8
增长系数
1
0.68
2
1.01
3
0.91
4
1.13
5
0.85
6
0.74
7
1.02
8
1.05
增长系数
0.54
1.37
0.89
1.32
0.83
0.53
1.23
1.27
4.第二次迭代结果如下
1
2
3
4
5
6
7
8
合计
1
242515.5
114468.9
9917.2
33328.9
12275.2
5102.5
158960.9
127857.0
704426.0
2
137791.5
33987.9
961.0
7413.9
2007.4
2044.2
23213.2
16500.8
223919.9
3
14095.6
2433.2
6896.8
2649.3
1900.6
349.7
3182.1
2394.5
33901.9
4
50767.0
5814.7
8890.9
14275.9
6187.1
5152.0
9027.1
6853.5
106968.2
5
11528.1
3216.9
1222.3
3496.7
16220.1
1611.4
5215.3
4112.1
46622.8
6
9153.5
3242.0
451.5
3516.2
409.8
11424.2
6263.7
4270.3
38731.3
7
178499.4
21950.1
4331.5
22904.6
4534.4
13881.2
202619.4
74093.2
522813.8
8
153161.3
17723.0
3585.6
18436.1
3782.8
11710.1
65138.8
148319.1
421856.7
合计
797511.9
202836.9
36256.8
106021.7
47317.4
51275.2
473620.4
384400.4
2099240.6
5.计算增长率
1
2
3
4
5
6
7
8
增长率
1
0.85
2
1.14
3
1.06
4
1.18
5
0.99
6
0.97
7
1.05
8
1.07
增长率
0.75
1.26
0.99
1.19
0.98
0.73
1.16
1.17
6.收敛判定不满足,继续迭代,第三迭代结果如下
1
2
3
4
5
6
7
8
合计
1
194253.9
120667.4
9120.3
33973.4
11221.3
4039.3
159907.2
129218.2
662401.0
2
130254.2
40733.0
1022.4
8627.2
2124.7
1913.2
26701.1
19057.6
230433.5
3
12747.1
2816.4
7055.3
2974.3
1933.8
313.0
3529.9
2667.4
34037.4
4
48961.6
7080.0
9629.6
16885.3
6667.1
4920.5
10556.2
8046.6
112746.9
5
10050.0
3618.9
1210.6
3811.8
15975.7
1389.7
5615.5
4446.9
46119.2
6
7877.7
3610.9
442.1
3793.9
399.1
9724.8
6674.4
4570.4
37093.4
7
160948.7
25348.7
4419.5
25653.5
4601.7
12386.3
224225.5
82341.7
539925.5
8
139228.6
20597.4
3684.8
20784.4
3866.7
10535.1
72564.0
165922.1
437183.2
合计
704321.9
224472.7
36584.7
116503.8
46790.2
45221.9
509773.9
416271.1
2099940.0
(三)、Fratar法计算
1.计算公式
增长率
其中
所以
2.用MATLAB编程计算,程序过程如下:
clc
U=[599212.525510035845125957.54626037565550000450000];
V=U;
O=[426426,45668,15059,18511,28586,40697,96405,69315];
D=[426426,45670,15062,18512,28582,40691,96407,69317];
Q0=[281962,31867,6672,8125,10729,7227,46670,33174;
31806,5103,254,1028,605,815,3662,2395;
8169,535,3222,518,1092,294,734,495;
8941,750,1919,1715,1499,1607,1221,859;
10239,803,703,766,11917,1836,1366,956;
15546,943,336,885,411,19515,1915,1146;
40078,3247,1122,3132,1337,5399,31488,10602;
29685,2422,834,2343,992,3998,9351,19690;];
Q1=zeros(8,8);
Fo=zeros(8,2);
Fd=zeros(8,2);
fork=1:
1:
2
fori=1:
8
Fo(i,1)=U(i)/O(i);
end
fori=1:
8
Fd(i,1)=V(i)/D(i);
end
Li=zeros(8,1);
Lj=zeros(8,1);
fori=1:
8
Sum=0;
forj=1:
8
Sum=Sum+Q0(i,j)*Fd(j);
end
Li(i)=O(i)/Sum;
end
fori=1:
8
Sum=0;
forj=1:
8
Sum=Sum+Q0(j,i)*Fo(j);
end
Lj(i)=D(i)/Sum;
end
fori=1:
8
forj=1:
8
Q1(i,j)=Q0(i,j)*Fo(i)*Fd(j)*(Li(i)+Lj(j))/2;
end
end
O1=zeros(1,8);
D1=zeros(1,8);
fori=1:
8
forj=1:
8
O1(1,i)=Q1(i,j)+O1(1,i);
D1(1,i)=Q1(j,i)+D1(1,i);
end
Fo(i,2)=U(i)/O1(1,i);
Fd(i,2)=V(i)/D1(1,i);
end
Q0=Q1;
O=O1;
D=D1;
end
3.最终计算结果如下表:
O
1
2
3
4
5
6
7
8
合计
1
230618.7
104283.0
7767.8
24489.0
10686.2
3809.5
124129.5
96473.4
602257.2
2
104724.4
67211.9
1191.8
12507.1
2422.7
1729.1
39320.1
28130.4
257237.6
3
12932.1
3386.1
7297.0
3055.5
2095.1
299.8
3820.9
2822.6
35709.1
4
36232.1
12159.7
11074.3
25629.9
7395.8
4197.2
16100.7
12386.5
125176.2
5
11607.9
3637.8
1143.6
3258.3
16320.7
1340.2
5128.8
3936.4
46373.7
6
12497.3
3026.2
390.1
2707.8
396.6
10094.5
5172.1
3402.3
37686.9
7
105745.3
34332.6
4171.0
29745.2
4340.1
9192.4
263788.8
96720.4
548035.8
8
88323.4
28882.1
3494.0
25055.3
3633.8
7676.9
88202.3
202195.9
447463.6
合计
602681.2
256919.5
36529.5
126448.1
47291.0
38339.7
545663.1
446068.0
2099940.0
(4)、无约束重力模型计算
1.计算公式
无约束重力模型
其中:
2.用MATLAB编程计算,程序过程如下:
clc;
NowT=[0,0.4,0.35,0.23,0.18,0.21,1,1.12;
0.4,0,0.24,0.52,0.64,0.72,0.6,0.72;
0.35,0.24,0,0.26,0.52,0.6,0.68,0.8;
0.23,0.52,0.26,0,0.26,0.4,0.92,0.92;
0.18,0.64,0.52,0.26,0,0.14,1.2,1.24;
0.21,0.72,0.6,0.4,0.14,0,1.2,1.28;
1,0.6,0.68,0.92,1.2,1.2,0,0.24;
1.12,0.72,0.8,0.92,1.24,1.28,0.24,0];
HopeT=[0,0.25,0.29,0.19,0.15,0.17,0.71,0.7;
0.25,0,0.2,0.43,0.53,0.6,0.43,0.51;
0.29,0.2,0,0.22,0.33,0.5,0.57,0.5;
0.19,0.43,0.22,0,0.16,0.33,0.77,0.51;
0.15,0.53,0.33,0.16,0,0.12,1,1.03;
0.17,0.6,0.5,0.33,0.12,0,1,1.07;
0.71,0.43,0.57,0.77,1,1,0,0.2;
0.7,0.51,0.5,0.51,1.03,1.07,0.2,0];
OD0=[281962,31867,6672,8125,10729,7227,46670,33174,426426;
31806,5103,254,1028,605,815,3662,2395,45668;
8169,535,3222,518,1092,294,734,495,15059;
8941,750,1919,1715,1499,1607,1221,859,18511;
10239,803,703,766,11917,1836,1366,956,28586;
15546,943,336,885,411,19515,1915,1146,40697;
40078,3247,1122,3132,1337,5399,31488,10602,96405;
29685,2422,834,2343,992,3998,9351,19690,69315;
426426,45670,15062,18512,28582,40691,96407,69317,740667;];
fori=1:
1:
8
forj=1:
1:
8
if(NowT(i,j)==0)
NowT(i,j)=0.00001;
end
if(HopeT(i,j)==0)
HopeT(i,j)=0.00001;
end
end
end
OD1=zeros(8,8);
OD2=zeros(8,8);
z=zeros(1,64);
x=zeros(1,64);
y=zeros(1,64);
fori=1:
1:
8
forj=1:
1:
8
OD1(i,j)=OD0(i,j);
OD1(i,j)=log(OD1(i,j));
end
end
fori=1:
1:
8
forj=1:
1:
8
OD2(i,j)=OD0(i,9)*OD0(9,j);
OD2(i,j)=log(OD2(i,j));
end
end
fori=1:
1:
8
forj=1:
1:
8
z(1,8*(i-1)+j)=OD1(i,j);
x(1,8*(i-1)+j)=OD2(i,j);
y(1,8*(i-1)+j)=NowT(i,j);
end
end
Z=z';
X=[x;y]';
B=regress(Z,[ones(length(x),1)X]);
c=B
(1);
a=-B
(2);
b=-B(3);
FinalOD=[599212.5,255100,35845,125957.5,46260,37565,550000,450000,2099940];
OD3=zeros(9,9);
OD4=zeros(8,8);
fori=1:
1:
8
forj=1:
1:
8
OD4(i,j)=FinalOD(i)*FinalOD(j);
end
end
fori=1:
1:
8
forj=1:
1:
8
OD3(i,j)=exp(c)*(OD4(i,j)^a)/(exp(HopeT(i,j)*b));
end
end
fori=1:
1:
8
OD3(i,9)=0;
OD3(9,i)=0;
forj=1:
1:
8
OD3(i,9)=OD3(i,9)+OD3(i,j);
OD3(9,i)=OD3(9,i)+OD3(j,i);
end
end
FO=zeros(1,8);
FD=zeros(1,8);
OD5=zeros(9,9);
fork=1:
1:
22
fori=1:
1:
8
OD5(9,i)=FinalOD(i);
OD5(i,9)=FinalOD(i);
end
fori=1:
1:
8
FO(i)=OD5(i,9)/OD3(i,9);
FD(i)=OD5(9,i)/OD3(9,i);
end
fori=1:
1:
8
forj=1:
1:
8
OD5(i,j)=OD3(i,j)*(FO(i)+FD(j))/2;
end
end
fori=1:
1:
8
OD5(i,9)=0;
OD5(9,i)=0;
forj=1:
1:
8
OD5(i,9)=OD5(i,9)+OD5(i,j);
OD5(9,i)=OD5(9,i)+OD5(j,i);
end
end
OD3=OD5;
end
3.最终计算结果如下表:
1
2
3
4
5
6
7
8
合计
1
216721.6
86012.9
15620.9
56095.2
27077.2
22290.1
94516.0
80817.3
599151.3
2
86012.9
32860.0
1834.7
7730.1
2128.3
1548.2
73391.5
49619.4
255125.3
3
15620.9
1834.7
0.1
108.9
0.6
0.2
10778.3
7510.8
35854.5
4
56095.2
7730.1
108.9
2229.0
241.1
138.4
30962.2
28479.2
125984.1
5
27077.2
2128.3
0.6
241.1
4.1
1.5
10299.6
6521.6
46274.0
6
22290.1
1548.2
0.2
138.4
1.5
0.7
8495.9
5101.9
37576.9
7
94516.0
73391.5
10778.3
30962.2
10