北师大版八上数学21认识无理数知识精讲.docx
《北师大版八上数学21认识无理数知识精讲.docx》由会员分享,可在线阅读,更多相关《北师大版八上数学21认识无理数知识精讲.docx(5页珍藏版)》请在冰豆网上搜索。
北师大版八上数学21认识无理数知识精讲
知识点总结
一、认识无理数
1.无理数的定义:
无限不循环小数称为无理数.
2.无理数类型:
(1)化简后含有π的
(2)特殊结构的,如:
0.1010010001…(两个1之间依次多1个0)
(3)开方开不尽的
3、实数的概念及分类
①实数的分类
②无理数
无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
开方开不尽的数,如√7,3√2等;
有特定意义的数,如圆周率π,或化简后含有π的数,如π/?
+8等;
有特定结构的数,如0.1010010001…等;
某些三角函数值,如sin60°等
4、实数的倒数、相反数和绝对值
①相反数
实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
②绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
|a|≥0。
0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
③倒数
如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
0没有倒数。
④数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
⑤估算
微课精讲
易错辨析:
一.明确无理数的存在
无理数来自实践,无理数并不“无理”,也不是人们臆想出来的,它是实实在在存在的,例如:
(1)一个直角三角形,两条直角边长分别为1和2,由勾股定理知,它的斜边长为;
(2)任何一个圆,它的周长和直径之比为一常数等等;
像这样的数,在我们周围的生活中,不是只有少数几个,而是像有理数一样有无限个。
二.弄清无理数的定义
教材中指出:
无限不循环小数叫无理数,这说明无理数是具有两个基本特征的小数:
一是小数位数是无限的;二是不循环的。
这对初学者来说有一定难度,因此,我们必须掌握它的表现形式。
三.掌握无理数的表现形式
在初中阶段,无理数表现形式主要有以下几种:
1.无限不循环的小数,如0.1010010001……(两个1之间依次多一个0)
2.含的数,如:
,,等。
3.开方开不尽而得到的数,如,等。
4.某些三角函数值:
如,等。
四.辨别一些模糊认识
1.无限小数都是无理数
无限小数分:
为无限循环小数和无限不循环小数,其中无限循环小数是有理数,只有无限不循环的小数才是无理数。
2.无理数包括正无理数、负无理数和零。
受思维习惯的影响,有些同学错误认为正无理数与负无理数之间应有零,零也是无理数,其实零是一个有理数,因此,无理数只分为正无理数和负无理数两类。
3.带根号的数是无理数。
是有理数2,是有理数-2,可见带根号的数不一定是无理数。
4.无理数是用根号形式表示的数。
是无理数,但并不是用根号形式表示的,再如:
0.1010010001……(两个1之间依次多一个),亦为不带根号的无理数。
5.无理数是开方开不尽的数。
无理数并非由开方的结果来定义的,事实上,如,0.232232223……,等无理数,都不是由开方得到的。
6.两个无理数的和、差、积、商仍是无理数。
两个无理数的和,差,积,商不一定是无理数,如:
等都是有理数。
7.无理数与有理数的乘积是无理数。
这种说法是错误的!
由等似乎易见无理数与有理数的积是无理数,就下肯定结论,错了!
如等足以推翻以上结论。
8.有些无理数是分数。
因为分数属于有理数,且无理数与有理数是两类不同的数,所以说,无理数不可能写成分数,当然,有些无理数可以借助分数线来表示。
如,但一定要注意它并不是分数。
9.无理数比有理数少。
这种说法错误,无理数在人们生产和生活中使用的少一些,但并不是说无理数就少一些,我们平常的计算中没有特别需要时,习惯地把一些无理数按要求通过取近似值的方法用有理数来表示,这样似乎就觉得使用无理数少一些,实际上,无理数也有无限个且比有理数多得多。
10.一个无理数的平方一定是有理数。
这种说法错误,不要误认为只有等无理数,如等也是无理数,显然等不是有理数。