基于单片机的开关电源设计毕业论文.docx

上传人:b****8 文档编号:9585565 上传时间:2023-02-05 格式:DOCX 页数:55 大小:870.09KB
下载 相关 举报
基于单片机的开关电源设计毕业论文.docx_第1页
第1页 / 共55页
基于单片机的开关电源设计毕业论文.docx_第2页
第2页 / 共55页
基于单片机的开关电源设计毕业论文.docx_第3页
第3页 / 共55页
基于单片机的开关电源设计毕业论文.docx_第4页
第4页 / 共55页
基于单片机的开关电源设计毕业论文.docx_第5页
第5页 / 共55页
点击查看更多>>
下载资源
资源描述

基于单片机的开关电源设计毕业论文.docx

《基于单片机的开关电源设计毕业论文.docx》由会员分享,可在线阅读,更多相关《基于单片机的开关电源设计毕业论文.docx(55页珍藏版)》请在冰豆网上搜索。

基于单片机的开关电源设计毕业论文.docx

基于单片机的开关电源设计毕业论文

基于单片机的开关电源设计毕业论文

 

摘要I

AbstractII

第一章绪论1

1.1引言1

1.2开关电源简介1

第二章开关电源DC/DC电路设计思路2

2.1开关电源的工作原理2

2.2开关电源的常见拓扑结构简介3

2.3开关电源DC/DC拓扑设计思路4

2.3.1DC/DC基本拓扑设计方案4

2.4DC/DC电路实现5

2.4.1DC/DC回路参数设计7

2.5系统供电模块设计8

2.5.1整流滤波电路设计8

2.5.2工作辅助电源参数设计9

第三章控制系统的设计思路10

3.2单片机模块的设计11

3.2.1STC89C52性能简介11

3.2.2最小系统设计11

3.3A/D模块设计12

3.3.1芯片介绍12

3.3.2TLC549工作时序13

3.3.3A/D电路设计14

3.4D/A模块设计15

3.4.1D/A芯片功能介绍15

3.4.2D/A芯片I2C总线数据通信基本协议15

3.5接口电路的设计17

3.5.1显示接口电路设计17

3.5.2显示接口电路设计17

第四章程序设计19

4.1主程序流程图的设计19

4.2键盘扫描程序设计20

4.3A/D程序设计21

4.4D/A程序设计22

第五章系统仿真23

5.1仿真仪器23

5.2仿真方法23

5.3仿真结果与分析23

参考文献24

附录一:

系统整体原理图25

附录二:

程序代码26

结论与展望...........................................................................

致谢35

第一章绪论

1.1引言

随着电子技术的发展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关心。

性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件越优越,那么设备的寿命更长。

基于此,人们对高精度、高稳定性的开关电源的需求越来越迫切。

众所周知,许多科学实验都离不开电源,并且在这些实验经常会对通电时间、电压高低、电流大小以及动态指标有着特殊的要求,然而目前实验所用的直流电源大多输出精度和稳定性不高;在测量上,传统的电源一般采用指针式或数码管显示电压或电流,搭配电位器来调整所要的电压及电流输出值。

使用上若压要调整精确的电或者电流输出,须搭配精确的显示仪表测量,又因电位器的阻值特性非线性,在调整时,需要花费一定的时间,况且还要当心漂移,使用起来非常不方便。

因此,开关电源不仅具备良好的输出质量而且还具有多功能以及一定的智能化,以精确的微机控制取代精确度小的人为操作,在实验开始之前就对一些参数进行预设,这将会给各个领域中的实验研究带来不同程度的便捷与高效。

开关电源是利用现代电力电子技术,控制开关管开通和关断的之间比率,维持稳定输出电压的一种电源,具有高效率、体积小的特点。

从上世纪90年代以来开关电源相继进入各种电子、电器设备领域,计算机、程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源。

开关电源向着高频化、模块化和智能化方向发展

目前,在小功率开关电源的设计中,普遍采用专用集成芯片控制脉宽调制技术。

使用专用PWM控制芯片具有电路简单、安装与调试简便、性能优良、价格低廉等优点。

1.2开关电源简介

开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制PWM(PulseWidthModulation,脉冲宽度调制)控制IC和MOSFET构成。

开关电源和线性电源相比,两者的成本都随着输出功率的增加而增长,但两者增长速率各异。

线性电源成本在某输出功率点上,反而高于开关电源,这点称为成本反转点。

随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。

第二章开关电源DC/DC电路设计思路

2.1开关电源的工作原理

Ui是开关电源的工作电压,即:

直流输入电压;K是控制开关,R是负载。

当控制开关K接通的时候,开关电源就向负载R输出一个脉冲宽度为Ton,幅度为Ui的脉冲电压U。

;当控制开关K关断的时候,又相当于开关电源向负载R输出一个脉冲宽度为Toff,幅度为0的脉冲电压。

这样,控制开关K不停地“接通”和“关断”,在负载两端就可以得到一个脉冲调制的输出电压:

U。

=Ui*Ton/D,其中D=Ton/T,所以可以推导出:

U。

=Ui*D。

如图2.1.1开关电源工作原理图。

图2.1.1开关电源工作原理图

串联式开关电源输出电压滤波电路

大多数开关电源输出都是直流电压,因此,一般开关电源的输出电路都带有整流滤波电路。

图2.1.2是带有整流滤波功能的串联式开关电源工作原理图。

图2.1.2带有整流滤波功能的串联式开关电源工作原理图

图2.1.2中由一个整流二极管和一个LC滤波电路组成。

其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关K关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。

2.2开关电源的常见拓扑结构简介

DC-DC变换有隔离和非隔离两种。

输入输出隔离的方式虽然安全,但是由于隔离变压器的漏磁和损耗等会造成效率的降低,而本题没有要求输入输出隔离,具体有以下几种:

拓扑一:

降压斩波电路(BuckChopper)。

开关管T1受占空比为D的PWM波的控制,交替导通或截止,再经L和C滤波器在负载R上得到稳定直流输出电压U。

该电路属于降压型电路,能够达到题目要求的5-15V的输出电压。

如图2.2.1所示。

图2.2.1降压斩波电路

拓扑二:

升压斩波电路(BoostChopper)。

并联开关电路原理与串联开关电路类似,但此电路为升压型电路,开关导通时电感储能,截止时电感能量输出。

只要电感绕制合理,不能达到题目要求的5-15V,且输出电压U,呈现连续平滑的特性。

如图2.2.2所示。

图2.2.2升降压电路

拓扑三:

升降压斩波电路(Boost-BuckChopper)。

实际卜此电路是在串联开关电路后接入一个并联开关电路。

用电感的储能特性来实现升降压,电路控制复杂。

如图2.2.3所示。

图2.2.3升降压电路

2.3开关电源DC/DC拓扑设计思路

2.3.1DC/DC基本拓扑设计方案

本系统采用数字信号转模拟信号并同输出采样的反馈信号做加法运算后输入到PWM控制芯片的比较端,然后由芯片自身根据反馈量来自动调节PWM信号的占空比。

从而达到所需的稳定电压值的目的。

本系统主要由辅助工作电源、电源模块、单片机控制器等几部分组成,硬件系统框图如图2.3.1所示,其中,输出微机可调电源模块拓扑结构为Buck电路。

图2.3.1硬件系统框图

2.4DC/DC电路实现

本设计采用以TL494芯片为核心的PWM控制器。

TL494是一种性能优良的脉宽阔制控制电路,可作为推挽式、全桥式半桥式开关电源控制器,工作额定频率为lOkHz--300kHz,输出电压可达40V。

其旗一个线性锯齿波振荡器,振荡频率可通过一个外部电阻和一个电容进行调节。

工作温度围:

TL494为-40℃-85℃。

1、2脚和15、16脚分别为两个电压比较器输入端,由于本次设计的电源只对一路电压输出,所以只需要一绸比较器,所以把15、16脚分别接V,。

,、地进行屏蔽;然后1脚接反馈FB,2脚接标准电压Vrct,通过比较1、2脚的电位,来控制占空比。

在本控制器中只剧到了TL494的误差放大器I,战将误著放大器的IN(16脚)接地、IN(15脚)接高电平。

为保护TL494的输出三极管,经R26和R25分压,在4脚加接近0.3V的间歇期调整电压。

R13、C14和C6组成了闭环校正网络,然后通过分析得出该电源的T作频率为30kHz,又因为5、6脚为振荡器的RT.CT输入端,决定工作频率。

如图2.3.1TL494部结构图。

图2.3.1TL494部结构电路图

根据以上所述资料,本设计开关型稳压电路的拓扑结构采用以下方式如图2.3.1所示。

其中输入电压的Ui为直流供电电压,晶体管T为开关管,开关管的基极信号u。

为矩形波(也是PWM的输m),电感L和电容C组成滤波电路,D为续流二极管。

本设计中的电源工作原理如下:

T管的T作状态受U。

的控制。

当U。

为高电平时,饱和导通,Ui通过T给电感L充电储能,充电电流几乎线性增大;D受到反压截止;滤波电容C对负载电阻放电;当U。

为低平时,T截止,L产生感生电动势,其方向阻止电流的变化,因而电流与Ui同方向,两个电压卡曰加后通过二极管D对C充电。

所以,无论T和D的状态如何,负载电流方向始终不变。

图2.4DC-DC回路原理图

2.4.1DC/DC回路参数设计

TL494DC/DC参数设计

如图2-4所示。

该电路是以TL494为核心的单端PWM降压型开关稳压电路。

图中C2与R11决定了振荡器振荡频率,也就决定了最终输入的PWM信号的频率。

电阻R8阻值为0.1欧,作限流保护作用。

其部误差放大器的同相输入端(脚1)通过5.1K的电阻R9接输出反馈信号,而反相器输入端(2脚)经R6与14脚的基准电压相连。

输出电压变化时,1脚得到的反馈信号也相应变化,同2脚上的基准电压比较后经误差放大器输出,也即加在芯片的PWM比较器同相输入

端的电压信号相应发生变化,使得芯片输出的PWM占空比相应变化,从而使输出电压稳定。

由R11=10K,C2=100pF,使得振荡频率f=1.1/R11C2=1100KHz。

电感最小值、滤波电容及电流峰峰值的计算公式如下:

Lmin=[(Ui-Uo)/2×Io]Ton

C>Uo×ToFF/(8×L×f×Uo)

Iop=ILP=[[(Ui-Uo)/2×L]Ton+Io

 

 

通过理论计算后,结合实际情况选择了2mH的电感和470uF的电容。

整流滤波之后的波形图,如图2.4.1所示

图2.4.1整流滤波之后的波形图

2.5系统供电模块设计

220V市电经工频变压器降至18VAC,经整流和滤波作为电源模块调试时的输入24VDC,24VDC经7815稳压后给电源模块的运算比较电路提供工作电源;+15VDC经7805稳压后给STC89C52单片机系统提供工作电源。

如图(a)工作电源。

图(a)工作电源

2.5.1整流滤波电路设计

本设计采用桥式整流电路把交流电转化成直流电,如图2.5.1所示。

桥式整流与半波流的相比,输出电压的脉动小很多。

由于还需要进行DC-DC的精确变换,对直流的要求不是很高,所以在整流后只加上个电容进行滤波,以减小整流后直流电中的脉动成分。

如图3.1.1桥式整理滤波电路所示。

图2.5.1桥式整理滤波电路

2.5.2工作辅助电源参数设计

由AC/AC、AC/DC、DC/DC等几部分组成。

电路图如图4.5.1所示。

220V市电经工频变压器降至18VAC,经整流和滤波作为电源模块调试时的输入24VDC,24VDC经7815稳压后给电源模块的运算比较电路提供工作电源;+15VDC经7805稳压后给STC89C52单片机系统提供工作电源。

图2.5.2辅助工作电源电路

±15V电源(0.7A)

对于滤波电容的选择,要考虑三点:

①整流管压降;②7815最小允许压降Ud;③电网波动10%。

由此计算得到允许纹波的峰—峰值。

电路如图2.5.2所示。

V

按近似电流放电计算,并没⊙=

(通角),则

C=

1430uF,故选取滤波电容C=2200uF/30V

+5V电源(1A)

+5V电源电路如图5所示。

计算允许的最大纹波峰-峰值

故选取滤波电容C=4700uF/16V。

第三章控制系统的设计思路

3.1控制系统的基本设计方案

+此设计用到单片机,它是把微处理器,存储器(RAM和ROM),输入/输出接口以及定时器/计数器等集成在一起的集成电路芯片。

它与集成电路相结合,组成一个输出电压可以认为设定,通过按键的键值来设定DA的数值量,然后又单片机把按键设定的键值送入DA芯片,由DA芯片来输出模拟信号改变反馈量,在电源的输出端采样电压,输入端用AD模数转对输出电压进行采样,进而对DA反馈进行电压自动调节。

该模块是控制和输出与单片机一同构成的模块。

利用单片机STC89C52和一些电路对输出电压进行探测。

对电源输出电压进行一系列控制。

如图3.1.1系统整体框图。

图3.1.1系统整体框图

3.2单片机模块的设计

3.2.1STC89C52性能简介

STC89C52是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片含有4KB的可反复擦写的只读程序存储器和128字节的随机存储器。

STC89C52功能性能:

与MCS-51成品指令系统完全兼容;2*4KB可编程闪速存储器;寿命:

10万次写/擦循环;数据保留时间:

10年;全静态工作:

0-24MHz;三级程序存储器锁定;2*128*8B部RAM;32个可编程I/O口线;3个16位定时/计数器;5个中断源;可编程串行UART通道;片震荡器和掉电模式。

3.2.2最小系统设计

单片机在启动运行时都需要复位,使CPU和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作。

MCS-51单片机有一个复位引脚RST,采用施密特触发输入。

当震荡器起振后,只要该引脚上出现2个机器周期以上的高电平即可确保时器件复位。

复位完成后,如果RST端继续保持高电平,MCS-51就一直处于复位状态,只要RST恢复低电平后,单片机才能进入其他工作状态。

单片机的复位方式有上电自动复位和手动复位两种,图3.2.1是MCS-51系列单片机统常用的上电复位和手动复位组合电路,只要Vcc上升时间不超过1ms,它们都能很好的工作。

图3.2.1复位电路

时钟电路设计

单片机中CPU每执行一条指令,都必须在统一的时钟脉冲的控制下严格按时间节拍进行,而这个时钟脉冲是单片机控制中的时序电路发出的。

CPU执行一条指令的各个微操作所对应时间顺序称为单片机的时序。

本设计系统采用部时钟方式,利用单片机部的高增益反相放大器,外部电路简,只需要一个晶振和2个电容即可,如图3.4.2所示。

图3.2.2时钟电路

3.3A/D模块设计

3.3.1芯片介绍

TLC549是TI公司生产的一种低价位、高性能的8位A/D转换器,它以8位开关电容逐次逼近的方法实现A/D转换,其转换速度小于17us,最大转换速率为40000HZ,4MHZ典型部系统时钟,电源为3V至6V。

它能方便地采用三线串行接口方式与各种微处理器连接,构成各种廉价的测控应用系统。

TLC549引脚图4.5.1及各引脚功能。

REF+:

正基准电压输入2.5V

REF+

VCC+0.1V。

REF-:

负基准电压输入端,-0.1V

REF-

2.5V。

且要求:

(REF+)-(REF-)

1V。

VCC:

系统电源3V

VCC

6V。

GND:

接地端。

/CS:

芯片选择输入端,要求输入高电平VIN

2V,输入低电平VIN

0.8V。

DATAOUT:

转换结果数据串行输出端,与TTL电平兼容,输出时高位在前,低位在后。

ANALOGIN:

模拟信号输入端,0

ANALOGIN

VCC当ANALOGIN

REF+电压时,转换结果为全“1”(0FFH),ANALOGIN

REF-电压时,转换结果为全“0”(00H)。

I/OCLOCK:

外接输入/输出时钟输入端,同于同步芯片的输入输出操作,无需与芯片部系统时钟同步。

图3.3.1TLC549引脚

3.3.2TLC549工作时序

当/CS变为低电平后,TLC549芯片被选中,同时前次转换结果的最高有效位MSB(A7)自DATAOUT端输出,接着要求自I/OCLOCK端输入8个外部时钟信号,前7个I/OCLOCK信号的作用,是配合TLC549输出前次转换结果的A6-A0位,并为本次转换做准备:

在第4个I/OCLOCK信号由高至低的跳变之后,片采样/保持电路对输入模拟量采样开始,第8个I/OCLOCK信号的下降沿使片采样/保持电路进入保持状态并启动A/D开始转换。

转换时间为36个系统时钟周期,最大为17us。

直到A/D转换完成前的这段时间,TLC549的控制逻辑要求:

或者/CS保持高电平,或者I/OCLOCK时钟端保持36个系统时钟周期的低电平。

由此可见,在自TLC549的I/OCLOCK端输入8个外部时钟信号期间需要完成以下工作:

读入前次A/D转换结果;对本次转换的输入模拟信号采样并保持;启动本次A/D转换开始。

如图3.3.2TL549工作时序图。

图3.3.2TL549工作时序

3.3.3A/D电路设计

图3.3.1所示为TLC549与STC89C52的硬件连接电路。

该硬件电路中,采用MAX813作为看门狗电路,既可自动复位,也可手工复位。

利用该电路可以用LCD液晶显示0-255个数字量,若将TLC549的输入引脚连接到示波器上,还可以显示相应的模拟电压的变化情况。

A/D系统TLC549与STC89C52的硬件连接硬件设计

图3.3.3TLC549与STC89C52的硬件连接图

3.4D/A模块设计

3.4.1D/A芯片功能介绍

MAX517引脚顶视图MAX517是MAXIM公司生产的8位电压输出型DAC数模转换器,它带有I2C总线接口,允许多个设备之间进行通讯。

MAX517采用单5V电源工作。

该芯片的引脚图见图3.4.1所示。

各引脚的具体说明如下:

1脚(OUT):

D/A转换输出端;

2脚(GND):

接地;

3脚(SCL):

时钟总线;

4脚(SDA):

数据总线;

5、6脚(AD1,AD0):

用于选择哪个D/A通道的转换输出由于MAX517只有一个D/A,所以,使用时,这两个引脚通常接地。

7脚(VCC):

电源;

8脚(REF):

参考。

图3.4.1max517引脚顶视图

3.4.2D/A芯片I2C总线数据通信基本协议

总线的特点及基本通信协议总线的特点及基本通信协议总线的特点及基本通信协议I2C总线是Philips公司开发的一种简单、双向二线制同步串行总线。

它只需要两根线串行数据线和串行时钟线即可使连接于总线上的器件之间实现信息传送,同时可通过对器件进行软件寻址,而不是对硬件进行片选寻址的方式来节约通信线数目,从而减少了硬件所占空间。

因为总线已集成在片,所以大大缩短了设计时间,此外,在从系统中移去或增加集成电路芯片时,对总线上的其它集成芯片没有影响。

MAX517通信协议:

I2C总线数据通信基本协议利用I2C总线进行数据通信时,应遵守如下基本操作:

(一)总线应处于不忙状态,当数据总线(SDA)和时钟总线(SCL)都为高电平时,为不忙状态;

(二)当SCL为高电平时,SDA电平由高变低时,数据传送开始。

所有的操作必须在开始之后进行;

(三)当SCL为高电平时,SDA电平由低变为高时,数据传送结束。

在结束条件下,所有的操作都不能进行;

(四)数据的有效转换开始后,当时钟线SCL为高电平时,数据线SDA必须保持稳定。

若数据线SDA改变时,必须在时钟线SCL为低电平时方可进行。

MAX517的外部引脚特征。

MAX517的一个地址字节格式如下表3-1:

表3-1地址字节格式

BIT7

BIT6

BIT5

BIT4

BIT3

BIT2

BIT1

BIT0

0

1

0

1

1

AD1

AD0

0

MAX517的控制字节格式如下表3-2:

表3-2控制字格式

BIT7

BIT6

BIT5

BIT4

BIT3

BIT2

BIT1

BIT0

R2

R1

R0

RST

PD

X

X

A0

MAX517的工作时序

首先应给MAX517一个地址位字节。

MAX517在收到地址字节位后,会给STC89C52一个应答信号。

然后,在给MAX517一个控制位字节,MAX517收到控制位字节位后,再给STC89C52发一个应答信号。

之后,MAX517便可以给STC89C52发送8位的转换数据(一个字节)。

STC89C52收到数据之后,再给MAX517发一个应答信号。

至此,一次转换过程完成。

3.4.3D/A电路设计

图3.4.2所示为MAX517与STC89C52的硬件连接电路。

该硬件电路中,采用MAX813作为看门狗电路,既可自动复位,也可手工复位。

利用该电路可以用数码管来显示0-255个数字量,图中,采用MAX7219作为数码驱动电路,若将MAX517的输出引脚连接到示波器上,还可以显示相应的模拟电压的变化情况。

MAX517与STC89C52的硬件连接

图3.4.2MAX517结构

3.5接口电路的设计

3.5.1显示接口电路设计

本系统的按键主要是用于对数据数字量进行控制,现对按键的功能简述如下:

S1键是功能键,切换需要选择调整的位,S2、S3键分别对数据进行加的操作,S4,S5是减键。

其中:

按键与单片机的P3口的高位地址相连,每个按键上,带上上拉电阻。

如图3.5.1所示。

图3.5.1按键与单片机的接口间的设计

3.5.2显示接口电路设计

晶显示器简称为LCD显示器,它是利用液晶经过处理后能改变光线的传输方向的特征实现显示信息的。

1602字符型LCD引脚说明引脚说明如表3-3所示。

表3-31602字符型LCD引脚

编号

符号

引脚说明

编号

符号

引脚说明

1

VSS

电源地

9

D2

数据口

2

VDD

电源正极

10

D3

数据口

3

VO

液晶显示器对比度调整端

11

D4

数据口

4

RS

数据/命令选择端(H/L)

12

D5

数据口

5

R/W

读/写选择端(H/L)

13

D6

数据口

6

E

使能信号

14

D7

数据口

7

D0

数据口

15

BLA

背光源正极

8

D1

数据口

16

BLK

背光源负极

1602字符型LCD与单片机的连接接口说明如下:

(1)液晶1、2端为电源;15、16端为背光电源;15脚串接一个100电阻用于限流。

(2)液晶3端为液晶对

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1